• 제목/요약/키워드: Bounded operators on Hilbert spaces

검색결과 17건 처리시간 0.028초

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • 충청수학회지
    • /
    • 제24권1호
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.

INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL OF PRODUCT INTEGRATORS WITH APPLICATIONS

  • Dragomir, Silvestru Sever
    • 대한수학회지
    • /
    • 제51권4호
    • /
    • pp.791-815
    • /
    • 2014
  • We show amongst other that if $f,g:[a,b]{\rightarrow}\mathbb{C}$ are two functions of bounded variation and such that the Riemann-Stieltjes integral $\int_a^bf(t)dg(t)$ exists, then for any continuous functions $h:[a,b]{\rightarrow}\mathbb{C}$, the Riemann-Stieltjes integral $\int_{a}^{b}h(t)d(f(t)g(t))$ exists and $${\int}_a^bh(t)d(f(t)g(t))={\int}_a^bh(t)f(t)d(g(t))+{\int}_a^bh(t)g(t)d(f(t))$$. Using this identity we then provide sharp upper bounds for the quantity $$\|\int_a^bh(t)d(f(t)g(t))\|$$ and apply them for trapezoid and Ostrowski type inequalities. Some applications for continuous functions of selfadjoint operators on complex Hilbert spaces are given as well.

A STUDY ON ANNIHILATOR CONDITIONS OF POLYNOMIALS

  • Cho, Yong-Uk
    • 대한수학회보
    • /
    • 제38권1호
    • /
    • pp.137-142
    • /
    • 2001
  • In this paper, we initiate the study of some annihilator conditions on polynomials which were used by Kaplansky [4] to abstract algebras of bounded linear operators on a Hilbert spaces with Baer condition. On the other hand, p.p. rings were introduced by A. Hattori [3] to study the torsion theory. The purpose of this paper is to introduce near-rings with Baer condition and near-rings with p.p. condition which are somewhat different from the ring case, and to extend a results of Armendarz [1] to polynomial near-rings with Baer condition in somewhat different way of Birkenmeier and Huang [2].

  • PDF

SUPERCYCLICITY OF ℓp-SPHERICAL AND TORAL ISOMETRIES ON BANACH SPACES

  • Ansari, Mohammad;Hedayatian, Karim;Khani-Robati, Bahram
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.653-659
    • /
    • 2017
  • Let $p{\geq}1$ be a real number. A tuple $T=(T_1,{\ldots},T_n)$ of commuting bounded linear operators on a Banach space X is called an ${\ell}^p$-spherical isometry if ${\sum_{i=1}^{n}}{\parallel}T_ix{\parallel}^p={\parallel}x{\parallel}^p$ for all $x{\in}X$. The tuple T is called a toral isometry if each Ti is an isometry. By a result of Ansari, Hedayatian, Khani-Robati and Moradi, for every $n{\geq}1$, there is a supercyclic ${\ell}^2$-spherical isometric n-tuple on ${\mathbb{C}}^n$ but there is no supercyclic ${\ell}^2$-spherical isometry on an infinite-dimensional Hilbert space. In this article, we investigate the supercyclicity of ${\ell}^p$-spherical isometries and toral isometries on Banach spaces. Also, we introduce the notion of semicommutative tuples and we show that the Banach spaces ${\ell}^p$ ($1{\leq}p$ < ${\infty}$) support supercyclic ${\ell}^p$-spherical isometric semi-commutative tuples. As a result, all separable infinite-dimensional complex Hilbert spaces support supercyclic spherical isometric semi-commutative tuples.

ADDITIVE MAPPINGS ON OPERATOR ALGEBRAS PRESERVING SQUARE ABSOLUTE VALUES

  • TAGHAVI, A.
    • 호남수학학술지
    • /
    • 제23권1호
    • /
    • pp.51-57
    • /
    • 2001
  • Let $\mathcal{B}(H)$ and $\mathcal{B}(K)$ denote the algebras of all bounded linear operators on Hilbert spaces $\mathcal{H}$ and $\mathcal{K}$, respectively. We show that if ${\phi}:\mathcal{B}(H){\rightarrow}\mathcal{B}(K)$ is an additive mapping satisfying ${\phi}({\mid}A{\mid}^2)={\mid}{\phi}(A){\mid}^2$ for every $A{\in}\mathcal{B}(H)$, then there exists a mapping ${\psi}$ defined by ${\psi}(A)={\phi}(I){\phi}(A)$, ${\forall}A{\in}\mathcal{B}(H)$ such that ${\psi}$ is the sum of $two^*$-homomorphisms one of which C-linear and the othere C-antilinear. We will also study some conditions implying the injective and rank-preserving of ${\psi}$.

  • PDF

ANNIHILATOR CONDITIONS ON RINGS AND NEAR-RINGS

  • Cho, Yong-Uk
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제10권3호
    • /
    • pp.177-183
    • /
    • 2003
  • In this paper, we initiate the study of some annihilator conditions on polynomials which were used by Kaplansky [Rings of operators. W. A. Benjamin, Inc., New York, 1968] to abstract the algebra of bounded linear operators on a Hilbert spaces with Baer condition. On the other hand, p.p.-rings were introduced by Hattori [A foundation of torsion theory for modules over general rings. Nagoya Math. J. 17 (1960) 147-158] to study the torsion theory. The purpose of this paper is to introduce the near-rings with Baer condition and near-rings with p.p. condition which are somewhat different from ring case, and to extend a results of Armendariz [A note on extensions of Baer and P.P.-rings. J. Austral. Math. Soc. 18 (1974), 470-473] and Jøndrup [p.p. rings and finitely generated flat ideals. Proc. Amer. Math. Soc. 28 (1971) 431-435].

  • PDF

REDUCING SUBSPACES OF A CLASS OF MULTIPLICATION OPERATORS

  • Liu, Bin;Shi, Yanyue
    • 대한수학회보
    • /
    • 제54권4호
    • /
    • pp.1443-1455
    • /
    • 2017
  • Let $M_{z^N}(N{\in}{\mathbb{Z}}^d_+)$ be a bounded multiplication operator on a class of Hilbert spaces with orthogonal basis $\{z^n:n{\in}{\mathbb{Z}}^d_+\}$. In this paper, we prove that each reducing subspace of $M_{z^N}$ is the direct sum of some minimal reducing subspaces. For the case that d = 2, we find all the minimal reducing subspaces of $M_{z^N}$ ($N=(N_1,N_2)$, $N_1{\neq}N_2$) on weighted Bergman space $A^2_{\alpha}({\mathbb{B}}_2)$(${\alpha}$ > -1) and Hardy space $H^2({\mathbb{B}}_2)$, and characterize the structure of ${\mathcal{V}}^{\ast}(z^N)$, the commutant algebra of the von Neumann algebra generated by $M_{z^N}$.