REDUCING SUBSPACES OF A CLASS OF MULTIPLICATION OPERATORS

Bin Liu and Yanyue Shi

Abstract

Let $M_{z^{N}}\left(N \in \mathbb{Z}_{+}^{d}\right)$ be a bounded multiplication operator on a class of Hilbert spaces with orthogonal basis $\left\{z^{n}: n \in \mathbb{Z}_{+}^{d}\right\}$. In this paper, we prove that each reducing subspace of $M_{z^{N}}$ is the direct sum of some minimal reducing subspaces. For the case that $d=2$, we find all the minimal reducing subspaces of $M_{z^{N}}\left(N=\left(N_{1}, N_{2}\right), N_{1} \neq N_{2}\right)$ on weighted Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{2}\right)(\alpha>-1)$ and Hardy space $H^{2}\left(\mathbb{B}_{2}\right)$, and characterize the structure of $\mathcal{V}^{*}\left(z^{N}\right)$, the commutant algebra of the von Neumann algebra generated by $M_{z^{N}}$.

1. Introduction

Let T be a bounded linear operator on a Hilbert space. If \mathcal{M} is a closed subspace satisfying $T \mathcal{M} \subseteq \mathcal{M}$, then \mathcal{M} is called an invariant subspace of T. In addition, if \mathcal{M} also is invariant subspace of T^{*}, then \mathcal{M} is called a reducing subspace of T. Combining the methods in analysis, algebra and geometry, the reducing subspaces of multiplication operators with Blaschke products are characterized. The details can be found in the book [3] and its references.

On the polydisk, the research begins with some special functions. The reducing subspaces of $M_{z_{1}^{n} z_{2}^{m}}$ are described in $[4,5,6]$. For $p\left(z_{1}, z_{2}\right)=\alpha z_{1}^{n}+\beta z_{2}^{m}$ or $z_{1}^{n} \bar{z}_{2}^{m}$, the reducing subspaces of Toeplitz operator T_{p} are described in $[1,2,7]$. A reducing subspace \mathcal{M} is called minimal if there is no nonzero reducing subspace \mathcal{N} such that \mathcal{N} is a proper subspace of \mathcal{M}. For $N_{1} \neq N_{2}$, the results in [6] shows that $M_{z_{1}^{N_{1}} z_{2}^{N_{2}}}$ has more minimal reducing subspaces on unweighted Bergman space than on the weighted Bergman space in several cases. It is prove that all $L_{n, m}=\overline{\operatorname{span}}\left\{z_{1}^{n+l N_{1}} z_{2}^{m+l N_{2}}: l \in \mathbb{Z}_{+}\right\}$are the only minimal reducing subspaces of $M_{z_{1}^{N_{1}} z_{2}^{N_{2}}}$ on $A_{\alpha}^{2}\left(\mathbb{D}^{2}\right)$ with $\alpha>-1$ and $\alpha \neq 0$. While on the unweighted Bergman space $A^{2}\left(\mathbb{D}^{2}\right), L_{n, m}^{*}=\overline{\operatorname{span}}\left\{a z_{1}^{n+h N_{1}} z_{2}^{m+h N_{2}}+\right.$ $\left.b z_{1}^{\rho_{1}\left(m+h N_{2}\right)} z_{2}^{\rho_{2}\left(n+h N_{1}\right)} ; h=0,1,2, \ldots\right\}(a, b \in \mathbb{C})$ are all the minimal reducing

Received July 25, 2016; Revised October 12, 2016; Accepted November 29, 2016.
2010 Mathematics Subject Classification. Primary 47B35; Secondary 47C15.
Key words and phrases. multiplication operator, reducing subspace, commutant algebra, unit ball.

This research is partially supported by NSFC No. 11201438, 11171315.
subspaces of $M_{z_{1}^{N_{1}} z_{2}^{N_{2}}}$, if $\rho_{1}(m)=\frac{(m+1) N_{1}}{N_{2}}-1$ and $\rho_{2}(n)=\frac{(n+1) N_{2}}{N_{1}}-1$ are nonnegative integers.

Denote by \mathbb{Z}_{+}and \mathbb{N} the set of all the nonnegative integers and all the positive integers, respectively. For $d \in \mathbb{N}$, write $m=\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}_{+}^{d}$, $z^{m}=z_{1}^{m_{1}} z_{2}{ }^{m_{2}} \cdots z_{d}{ }^{m_{d}}, m!=m_{1}!m_{2}!\cdots m_{d}!$ and $|m|=m_{1}+m_{2}+\cdots+m_{d}$.

Let \mathcal{H} be a Hilbert space with the orthogonal basis $\left\{z^{m}\right\}_{m \in \mathbb{Z}_{+}^{d}}$, and satisfy that the multiplication operator M_{q} is bounded for each polynomial q. This kind of space contains a lot of classical spaces, such as weighted Bergman spaces over polydisk $A_{\alpha}^{2}\left(\mathbb{D}^{d}\right)$, weighted Bergman spaces over unit ball $A_{\alpha}^{2}\left(\mathbb{B}_{d}\right)$, Hardy space over unit ball $H^{2}\left(\mathbb{B}_{d}\right)$, and so on. Recall that $\mathbb{B}_{d}=\left\{z \in \mathbb{C}^{d}\right.$: $\left.\sum_{i=1}^{d}\left|z_{i}\right|^{2}<1\right\}$ and $S=\left\{z \in \mathbb{C}^{d}: \sum_{i=1}^{d}\left|z_{i}\right|^{2}=1\right\}$. Denote by $d \sigma$ the Haar measure on S, and by $H\left(\mathbb{B}_{d}\right)$ all the analytic functions on \mathbb{B}_{d}. The Hardy space $H^{2}\left(\mathbb{B}_{d}\right)$ is defined by

$$
H^{2}\left(\mathbb{B}_{d}\right)=\left\{f \in H\left(\mathbb{B}_{d}\right): \lim _{r \rightarrow 1^{-}} \int_{S}|f(r z)|^{2} d \sigma<+\infty\right\}
$$

Let $d A(z)$ denote the normalized area measure over \mathbb{B}_{d}, and let $d A_{\alpha}(z)=$ $C_{\alpha}\left(1-|z|^{2}\right)^{\alpha} d A(z)$, where C_{α} is a constant such that $d A_{\alpha}$ is normalized. The weighted Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{d}\right)$ is the Hilbert space of all holomorphic functions over \mathbb{B}_{d}, which are square integrable with respect to $d A_{\alpha}(z)$.

Guo and Huang [3] point that \mathcal{M} is a nonzero reducing subspace for $M_{z^{N}}=$ $M_{z_{1} N_{1} z_{2} N_{2} \ldots z_{d} N_{d}}$ on the Hilbert space \mathcal{H} if and only if

$$
\mathcal{M}=\bigoplus_{n}\left[\mathcal{M}_{n}\right]
$$

where $\left[\mathcal{M}_{n}\right]$ is the closure of the linear span of $\left\{z^{k N} \mathcal{M}_{n}\right\}(k \geq 0)$ and \mathcal{M}_{n} is a closed linear subspace of $E_{n}=\overline{\operatorname{span}}\left\{z^{m}: M_{z^{N}}^{* h} M_{z^{N}}^{h} z^{m}=M_{z^{N}}^{* h} M_{z^{N}}^{h} z^{n}, \forall h \in\right.$ $\left.\mathbb{Z}_{+}\right\}$, where $n \in\left\{m=\left(m_{1}, m_{2}, \ldots, m_{d}\right) \in \mathbb{Z}_{+}^{d}: 0 \leq m_{i}<N_{i}\right.$ for some $\left.i\right\}$.

In this paper, we continue to consider the reducing subspaces of $M_{z^{N}}$ on \mathcal{H}, and prove that every $\left[\mathcal{M}_{n}\right]$ is the direct sum of some minimal reducing subspaces. In particular, on $A_{\alpha}^{2}\left(\mathbb{B}_{2}\right)$ and $H^{2}\left(\mathbb{B}_{2}\right)$, we describe all the minimal reducing subspaces of $M_{z_{1}^{N_{1}} z_{2}^{N_{2}}}$ with $N_{1} \neq N_{2}$, and characterize the commutant algebra $\mathcal{V}^{*}\left(z_{1}^{N_{1}} z_{2}^{N_{2}}\right)$.

2. The results in general Hilbert space

Let \mathcal{H} be the Hilbert space defined in above section, and

$$
\Omega=\left\{n=\left(n_{1}, n_{2}, \ldots, n_{d}\right) \in \mathbb{Z}_{+}^{d}: 0 \leq n_{i}<N_{i} \text { for some } i\right\} .
$$

Define an equivalence on Ω by

$$
q \sim n \Leftrightarrow \frac{\gamma_{q+h N}}{\gamma_{q}}=\frac{\gamma_{n+h N}}{\gamma_{n}}, \forall h \geq 1
$$

where $\gamma_{m}=\left\|z^{m}\right\|^{2}$. For $n \in \Omega$, set $\Im_{n}:=\{q \in \Omega: q \sim n\}$ and $\mathcal{H}_{n}:=$ $\overline{\operatorname{span}}\left\{z^{J}: J \in \Im_{n}\right\}$. Then $\cup_{n \in F} \Im_{n}=\Omega$ and $\oplus_{n \in F} \mathcal{H}_{n}=\overline{\operatorname{span}}\left\{z^{J}: J \in \Omega\right\}$,
where F is the partition of Ω by the equivalence \sim. Let P_{m} be the orthogonal projection from \mathcal{H} onto \mathcal{H}_{m}. Denote by M the multiplication operator $M_{z^{N}}$. It is easy to check that

$$
\begin{aligned}
M^{*}\left(z^{m+h N}\right) & =\frac{\gamma_{m+h N}}{\gamma_{m+(h-1) N}} z^{m+(h-1) N} \\
M^{* h} M^{h} z^{m} & =\frac{\gamma_{m+h N}}{\gamma_{m}} z^{m}
\end{aligned}
$$

for any $m \in \Im_{n}$ and $h \in \mathbb{N}$. For $n \in \Omega$, denote by \widetilde{P}_{n} the orthogonal projection from \mathcal{H} onto $\operatorname{span}\left\{z^{J}: \frac{\gamma_{J+h N}}{\gamma_{J}}=\frac{\gamma_{n+h N}}{\gamma_{n}}, J \in \mathbb{Z}_{+}^{d}, \forall h \in \mathbb{Z}_{+}\right\}$. By the spectrum decomposition, we see that \widetilde{P}_{n} is in the von Neumann algebra generated by $M_{z^{N}}$. For every reducing subspace \mathcal{M} of M, denote by $P_{\mathcal{M}}$ the orthogonal projection from \mathcal{H} onto \mathcal{M}. Therefore, $\widetilde{P}_{n} P_{\mathcal{M}}=P_{\mathcal{M}} \widetilde{P}_{n}$. Since

$$
\left\langle P_{\mathcal{M}} z^{m}, z^{l}\right\rangle=\left\langle P_{\mathcal{M}} z^{m}, M z^{l-N}\right\rangle=\left\langle P_{\mathcal{M}} M^{*} z^{m}, z^{l-N}\right\rangle=0
$$

for $l \notin \Omega$ and $m \in \Omega$, we have $P_{\mathcal{M}} z^{m} \in \overline{\operatorname{span}}\left\{z^{J}: J \in \Omega\right\}$ and $P_{\mathcal{M}} z^{l} \perp\left\{z^{J}: J \in\right.$ $\Omega\}$. Therefore, $P_{n} P_{\mathcal{M}}=P_{\mathcal{M}} P_{n}$.

In the following, we prove that each nonzero reducing subspace for $M_{z^{N}}$ always contains a minimal reducing subspace, and every reducing subspace is the direct sum of several minimal reducing subspaces.
Theorem 2.1. Suppose \mathcal{M} be a nonzero reducing subspace of M on \mathcal{H}. Then

$$
\mathcal{M}=\bigoplus_{n \in F}\left[\mathcal{M}_{n}\right]=\bigoplus_{n \in F} \bigoplus_{j=1}^{q_{n}}\left[e_{n j}\right]
$$

where $\left\{e_{n j}\right\}_{j=1}^{q_{n}}\left(1 \leq q_{n} \leq+\infty\right)$ is the orthogonal basis of $\mathcal{M}_{n} \neq\{0\}$.
Proof. (1) Choose a nonzero function g in \mathcal{M}. Let h_{0} be the minimal nonnegative integer such that

$$
P_{\Omega} M^{* h_{0}}(g) \neq 0
$$

 Clearly, there exists $n \in \Omega$, such that $f=P_{n} P_{\Omega} M^{* h_{0}} g \neq 0$. In this case, $f=P_{n} P_{\mathcal{M}} M^{* h_{0}} g=P_{\mathcal{M}} P_{n} M^{* h_{0}} g=\Sigma_{J \in \Im_{n}} b_{J} z^{J}$. Then $f \in \mathcal{M} \cap \mathcal{H}_{n}$. By $f \in \mathcal{H}_{n}$, we obtain that

$$
M^{* q}\left(f z^{h N}\right)= \begin{cases}\frac{\gamma_{n+h N}}{\gamma_{n+(h-q) N}} f z^{(h-q) N} & \text { if } h \geq q \geq 0 \\ 0 & \text { if } q>h \geq 0\end{cases}
$$

Moreover, $M^{q}\left(f z^{h N}\right)=f z^{(h+q) N}$ for $h, q \geq 0 ; f z^{h_{1} N} \perp f z^{h_{2} N}$ with $h_{1} \neq h_{2}$, since

$$
\begin{aligned}
& \left\langle f z^{h_{1} N}, f z^{h_{2} N}\right\rangle=\left\langle M^{h_{1}} f, M^{h_{2}} f\right\rangle \\
& = \begin{cases}\frac{\gamma_{n+\left(h_{1}-1\right) N}}{\gamma_{n+}\left(h_{1}-h_{2}-1\right) N}\left\langle f z^{\left(h_{1}-h_{2}-1\right) N}, M^{*} f\right\rangle, & \text { if } \quad h_{1}>h_{2} \geq 0 \\
\frac{\gamma_{n}\left(h_{2}-1\right) N}{\gamma_{n+\left(h_{2}-h_{1}-1\right) N}}\left\langle M^{*} f, f z^{\left(h_{2}-h_{1}-1\right) N}\right\rangle, & \text { if } \quad h_{2}>h_{1} \geq 0\end{cases}
\end{aligned}
$$

$$
=0
$$

Thus, we conclude that $[f]=\overline{\operatorname{span}}\left\{f z^{h N}: h \in \mathbb{Z}_{+}\right\}=\bigoplus_{h=0}^{+\infty} \operatorname{span}\left\{f z^{h N}\right\} \subset \mathcal{M}$ is a reducing subspace of M. It is easy to see that $\left[f_{1}\right]=[f]$ for each $f_{1} \in[f]$. Thus $[f]$ is minimal.
(2) Denote by $\mathcal{M}_{n}=P_{n} \mathcal{M}$. Notice that $P_{n} \mathcal{M} \perp P_{m} \mathcal{M}$ for $m \notin \Im_{n}$. If $P_{n} \mathcal{M} \neq\{0\}$, choose an orthogonal basis $\left\{e_{n j}\right\}_{j=1}^{q_{n}}\left(1 \leq q_{n} \leq+\infty\right)$ of $P_{n} \mathcal{M}$. Notice that $\left[e_{n j}\right] \perp\left[e_{m i}\right]$ for $(n, j) \neq(m, i)$, since

$$
\begin{aligned}
& \left\langle e_{n j} z^{h_{1} N}, e_{m i} z^{h_{2} N}\right\rangle \\
& =\left\langle M^{h_{1}} e_{n j}, M^{h_{2}} e_{m i}\right\rangle \\
& = \begin{cases}\frac{\gamma_{n+\left(h_{1}-1\right) N}}{\gamma_{n+1}\left(h_{1}-h_{2}-1\right) N}\left\langle e_{n j} z^{\left(h_{1}-h_{2}-1\right) N}, M^{*} e_{m i}\right\rangle, & \text { if } h_{1}>h_{2} \geq 0 \\
\frac{\gamma_{m+}\left(h_{2}-1\right) N}{\left.\gamma_{m+(}-h_{1}-1\right) N}\left\langle M^{*} e_{n j}, e_{m i} z^{\left(h_{2}-h_{1}-1\right) N}\right\rangle, & \text { if } h_{2}>h_{1} \geq 0 \\
\frac{\gamma_{m+h N}-h_{1}}{\gamma_{m}}\left\langle e_{n j}, e_{m i}\right\rangle, & \text { if } h_{2}=h_{1}=h \geq 0\end{cases} \\
& =0 \text {. }
\end{aligned}
$$

By the result in (1), we know that $\left[e_{n j}\right]=\bigoplus_{h=0}^{+\infty} \mathbb{C} e_{n j} z^{h N}$ is a minimal reducing subspace of M. Thus $\left[P_{n} \mathcal{M}\right]=\bigoplus_{h=0}^{+\infty} z^{h N} P_{n} \mathcal{M}=\bigoplus_{h=0}^{+\infty} \bigoplus_{j=1}^{q_{n}} \mathbb{C} e_{n j} z^{h N}=\bigoplus_{j=1}^{q_{n}}\left[e_{n j}\right]$. So we finish the proof.

Put $\mathcal{V}^{*}\left(z^{N}\right)$ the commutant algebra of the von Neumann algebra generated by $M_{z^{N}}$. Then $\mathcal{V}^{*}\left(z^{N}\right)$ is a von Neumann algebra and is the norm closed linear span of its projections. Recall that two reducing subspaces M_{1} and M_{2} of $M_{z^{N}}$ are called unitarily equivalent if there exists a unitary operator U from M_{1} onto M_{2} and U commutes with $M_{z^{N}}$. One can show that M_{1} is unitarily equivalent to M_{2} if and only if $P_{M_{1}}$ and $P_{M_{2}}$ are equivalent in $\mathcal{V}^{*}\left(z^{N}\right)$, that is, there is a partial isometry V in $\mathcal{V}^{*}\left(z^{N}\right)$ such that

$$
V^{*} V=P_{M_{1}}, V V^{*}=P_{M_{2}}
$$

Proposition 2.2. Let $n, m \in \Omega$ and $e_{n j}$, $e_{m i}$ be defined as in Theorem 2.1. Then the following statements hold.
(i) $L_{n}=\left[z^{n}\right]$ and $L_{m}=\left[z^{m}\right]$ are unitarily equivalent if and only if $n \sim m$;
(ii) $\left[e_{n j}\right]$ and $\left[e_{m i}\right]$ are unitarily equivalent if and only if $n \sim m$.

Proof. (i) On the one hand, assume that L_{n} and L_{m} are unitatily equivalent, then there is a partial isometry $U \in \mathcal{V}^{*}\left(z^{N}\right)$ such that $\left.U\right|_{L_{n}}$ is a unitary operator from L_{n} onto L_{m}. Obviously, $U M^{*} M\left(z^{n+h N}\right)=M^{*} M U\left(z^{n+h N}\right)$. It follows that

$$
\frac{\gamma_{n+(h+1) N}}{\gamma_{n}} U\left(z^{n+h N}\right)=\frac{\gamma_{m+(h+1) N}}{\gamma_{m}} U\left(z^{n+h N}\right) .
$$

Since $U\left(z^{n+h N}\right) \neq 0$, we have $\frac{\gamma_{n+(h+1) N}}{\gamma_{n+h N}}=\frac{\gamma_{m+(h+1) N}}{\gamma_{m+h N}}$ for $h \geq 0$, i.e., $n \sim m$.

On the other hand, if $n \sim m$, let

$$
U\left(z^{J}\right)= \begin{cases}\sqrt{\frac{\gamma_{n}}{\gamma_{m}}} z^{m+h N}, & \text { if } J=n+h N \\ 0, & \text { if } J \neq n+h N\end{cases}
$$

for $h=0,1,2, \ldots$ Then U is a partial isometry on \mathcal{H} and $\left.U\right|_{L_{n}}$ is a unitary operator from L_{n} onto L_{m}. It is easy to check that $U \in \mathcal{V}^{*}\left(z^{N}\right)$ by direct calculation.
(ii) Let $P_{n j}$ be the orthogonal projection from \mathcal{H} onto $\left[e_{n j}\right]$. Obviously, there is $n_{0} \sim n$ such that $\left\langle e_{n j}, z^{n_{0}}\right\rangle \neq 0$, that is, $P_{n_{0}} P_{n j} \neq 0$. Notice that $P_{n j}$ and $P_{n_{0}}$ are all minimal projection in $\mathcal{V}^{*}\left(z^{N}\right)$. As in [7], we have $P_{n j}$ is unitarily equivalent to $P_{n_{0}}$. Similarly, there is $m_{0} \sim m$ such that $P_{m i}$ is unitarily equivalent to $P_{m_{0}}$. Therefore, $\left[e_{n j}\right]$ is unitarily equivalent to [$e_{m i}$] if and only if $L_{n_{0}}$ is unitarily equivalent to $L_{m_{0}}$. By (i), we get the desired result.

3. The results on $A_{\alpha}^{2}\left(\mathbb{B}_{2}\right)$ and $H^{2}\left(\mathbb{B}_{2}\right)$

In this section, we consider the reducing subspaces of $M_{z_{1}^{N_{1}} z_{2}^{N_{2}}}$ with $N_{1}, N_{2} \geq$ 1 and $N_{1} \neq N_{2}$ on the weighted Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{2}\right)(\alpha>-1)$ and the Hardy space $H^{2}\left(\mathbb{B}_{2}\right)$. Let $n \in \mathbb{Z}_{+}^{2}$. Denote by $(n+h N)!=\prod_{i=1}^{2}\left(n_{i}+h N_{i}\right)$! and $|n+h N|=\sum_{i=1}^{2}\left(n_{i}+h N_{i}\right)$. On $A_{\alpha}^{2}\left(\mathbb{B}_{2}\right)$, we have

$$
\gamma_{n+h N}=\left\|z^{n+h N}\right\|_{\alpha}^{2}=\Gamma(\alpha+3)(n+h N)!/ \Gamma(\alpha+3+|n+h N|)
$$

for $\alpha>-1$. Obviously, $\left\{z^{m} / \sqrt{\gamma_{m}}\right\}_{m \in \mathbb{Z}_{+}^{2}}$ is an orthogonal basis of $A_{\alpha}^{2}\left(\mathbb{B}_{2}\right)$. Notice that on the Hardy space $H^{2}\left(\mathbb{B}_{2}\right), \gamma_{n+h N}=\left\|z^{n+h N}\right\|^{2}=(n+h N)!/(1+$ $|n+h N|)!=\Gamma(\alpha+3)(n+h N)!/ \Gamma(\alpha+3+|n+h N|)$ with $\alpha=-1$.

By Proposition 2.2, we know that the unitarily equivalent of reducing subspaces is converted to the equivalence of some numbers. So the relevant research on Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{2}\right)$ and that on the Hardy space $H^{2}\left(\mathbb{B}_{2}\right)$ are similar. In the following, define

$$
\gamma_{n+h N}=\Gamma(\alpha+3)(n+h N)!/ \Gamma(\alpha+3+|n+h N|)
$$

for $\alpha \geq-1$ and $n \in \mathbb{Z}_{+}^{2}$.
As in above section, define

$$
\Omega=\left\{\left(n_{1}, n_{2}\right) \in \mathbb{Z}_{+}^{2}: 0 \leq n_{i}<N_{i} \text { for some } i\right\}
$$

and

$$
q \sim n \Leftrightarrow \frac{\gamma_{q+h N}}{\gamma_{q}}=\frac{\gamma_{n+h N}}{\gamma_{n}}, \forall h \geq 1
$$

for $q, n \in \Omega$. Since

$$
\lim _{h \rightarrow \infty} \frac{\gamma_{q+h N}}{\gamma_{n+h N}}=\lim _{h \rightarrow \infty} \frac{(q+h N)!\Gamma(\alpha+3+|n+h N|)}{(n+h N)!\Gamma(\alpha+3+|q+h N|)}=1,
$$

$q \sim n$ if and only if $\gamma_{q+h N}=\gamma_{n+h N}, \forall h \in \mathbb{Z}_{+}$.
If $m \in \Im_{n}$, then

$$
\begin{equation*}
\frac{\gamma_{n+h N}}{\gamma_{n+(h+1) N}}=\frac{\gamma_{m+h N}}{\gamma_{m+(h+1) N}}, \forall h \in \mathbb{Z}_{+} \tag{1}
\end{equation*}
$$

Since $\Gamma(x+1)=x \Gamma(x)$ for $x>0$, we get

$$
\begin{gathered}
\frac{\prod_{j=1}^{N_{1}+N_{2}}\left(\alpha+2+n_{1}+h N_{1}+n_{2}+h N_{2}+j\right)}{\prod_{i=1}^{2} \prod_{j=1}^{N_{i}}\left(n_{i}+h N_{i}+j\right)} \\
=\frac{\prod_{j=1}^{N_{1}+N_{2}}\left(\alpha+2+m_{1}+h N_{1}+m_{2}+h N_{2}+j\right)}{\prod_{i=1}^{2} \prod_{j=1}^{N_{i}}\left(m_{i}+h N_{i}+j\right)}
\end{gathered}
$$

Let $g(\lambda)=\prod_{j=1}^{N_{1}+N_{2}}\left(\alpha+2+n_{1}+n_{2}+\lambda\left(N_{1}+N_{2}\right)+j\right) \prod_{i=1}^{2} \prod_{j=1}^{N_{i}}\left(m_{i}+\lambda N_{i}+j\right)-$ $\prod_{j=1}^{N_{1}+N_{2}}\left(\alpha+2+m_{1}+m_{2}+\lambda\left(N_{1}+N_{2}\right)+j\right) \prod_{i=1}^{2} \prod_{j=1}^{N_{i}}\left(n_{i}+\lambda N_{i}+j\right)$. Obviously, g is a polynomial over \mathbb{C} and $g(h)=0$ for any $h \in \mathbb{Z}_{+}$. By fundamental theorem of algebra, $g(\lambda) \equiv 0$ for all $\lambda \in \mathbb{C}$. Set

$$
\begin{aligned}
& E_{1}=\left\{\frac{n_{1}+j}{N_{1}}: j=1,2, \ldots, N_{1}\right\} ; E_{2}=\left\{\frac{n_{2}+j}{N_{2}}: j=1,2, \ldots, N_{2}\right\} ; \\
& E_{3}=\left\{\frac{2+\alpha+n_{1}+n_{2}+j}{N_{1}+N_{2}}: j=1,2, \ldots, N_{1}+N_{2}\right\} ; \\
& F_{1}=\left\{\frac{m_{1}+j}{N_{1}}: j=1,2, \ldots, N_{1}\right\} ; F_{2}=\left\{\frac{m_{2}+j}{N_{2}}: j=1,2, \ldots, N_{2}\right\} ; \\
& F_{3}=\left\{\frac{2+\alpha+m_{1}+m_{2}+j}{N_{1}+N_{2}}: j=1,2, \ldots, N_{1}+N_{2}\right\} .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
E_{1} \sqcup E_{2} \sqcup F_{3}=F_{1} \sqcup F_{2} \sqcup E_{3} . \tag{2}
\end{equation*}
$$

Denote by $\delta=G C D\left(N_{1}, N_{2}\right)$, then $N_{i}=\delta q_{i}$ for $i=1,2$ and $G C D\left(q_{1}, q_{2}\right)=1$.
Lemma 3.1. Let $\alpha \geq-1, n, m \in \Omega$ such that $n \sim m$ and $n \neq m$. Then $n_{1}+n_{2}=m_{1}+m_{2}$ or $n_{1}+n_{2}=m_{1}+m_{2} \pm 1$.
Proof. Without lose of generality, assume $n_{1}+n_{2}>m_{1}+m_{2}+1$ and $n_{1}>m_{1}$. Denote by $\widetilde{E}_{i}=E_{i} \backslash F_{i}$ and $\widetilde{F}_{i}=F_{i} \backslash E_{i}$ for $i=1,2,3$. Then $\widetilde{E}_{i} \cap \widetilde{F}_{i}=\emptyset$ and

$$
\begin{equation*}
\widetilde{E}_{1} \sqcup \widetilde{E}_{2} \sqcup \widetilde{F}_{3}=\widetilde{F}_{1} \sqcup \widetilde{F}_{2} \sqcup \widetilde{E}_{3} . \tag{3}
\end{equation*}
$$

Clearly, $\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1, \frac{1+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1 \in \widetilde{E}_{1} \sqcup \widetilde{E}_{2}$ and $\frac{3+\alpha+m_{1}+m_{2}}{N_{1}+N_{2}}, \frac{4+\alpha+m_{1}+m_{2}}{N_{1}+N_{2}} \in$ $\widetilde{F}_{1} \sqcup \widetilde{F}_{2}$. Furthermore, for $i, j \in\{1,2\}$ we claim that
(a) if $\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1 \in \widetilde{E}_{i}$, then $\frac{1+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1 \in \widetilde{E}_{j}$ for $j \neq i$.
(b) if $\frac{3+\alpha+m_{1}+m_{2}}{N_{1}+N_{2}} \in \widetilde{F}_{i}$, then $\frac{4+\alpha+m_{1}+m_{2}}{N_{1}+N_{2}} \in \widetilde{F}_{j}$ for $j \neq i$.

In fact, if $\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1, \frac{1+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1 \in \widetilde{E}_{i}$ for some $i \in\{1,2\}$, there are integers $1 \leq p_{i}, q_{i} \leq N_{i}$ such that

$$
\begin{aligned}
& \frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1=\frac{n_{i}+p_{i}}{N_{i}} \\
& \frac{1+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1=\frac{n_{i}+q_{i}}{N_{i}}
\end{aligned}
$$

Then $0 \neq \frac{1}{N_{1}+N_{2}}=\frac{p_{i}-q_{i}}{N_{i}}>\frac{p_{i}-q_{i}}{N_{1}+N_{2}} \geq \frac{1}{N_{1}+N_{2}}$, which is a contradiction. So (a) holds. Since the proof of (a) and (b) are similar, we omit the details of (b).

Next, we find the contradictions for three cases respectively.
(1) If $m_{2}>n_{2}$, then $\min \widetilde{F}_{2}>\max \widetilde{E}_{2}$. Since one of $\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1$ and $\frac{1+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1$ is in $\widetilde{E}_{2}, \lambda>\max \widetilde{E}_{2} \geq \frac{1+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1>\max \widetilde{F}_{3}$ for $\lambda \in \widetilde{F}_{2}$. It means that $\widetilde{F}_{3} \cap \widetilde{F}_{2}=\emptyset$, which is contradict with (b).
(2) If $m_{2}=n_{2}$, then $E_{2}=F_{2}$. Equality (3) implies that $\widetilde{F}_{3}=\widetilde{F}_{1}$, which is also contradict with (b).
(3) If $m_{2}<n_{2}$, we consider the maximum of equality (3), we have

$$
\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1=\max \left\{\frac{n_{1}}{N_{1}}+1, \frac{n_{2}}{N_{2}}+1\right\} .
$$

If $\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1=\frac{n_{1}}{N_{1}}+1 \in \widetilde{E}_{1}$, then $\frac{2+\alpha+n_{2}}{N_{2}}=\frac{n_{1}}{N_{1}}$. Since $\frac{1+\alpha+n_{1}}{N_{1}} \geq \frac{n_{1}}{N_{1}}=$ $\frac{2+\alpha+n_{2}}{N_{2}}>\frac{n_{2}}{N_{2}}$, we have $\frac{1+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1 \notin \widetilde{E}_{2}$, which contradicts (a).

If $\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1=\frac{n_{2}}{N_{2}}+1 \in \widetilde{E}_{2}$, by the symmetry of n_{1} and n_{2}, we get $\frac{1+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1 \notin \widetilde{E}_{1}$, which also contradicts (a). So we finish the proof.
Lemma 3.2. Let $\alpha \geq-1, n, m \in \Omega$ and $n \neq m$. Suppose $n_{1}+n_{2}=m_{1}+m_{2}$, then $n \sim m$ if and only if $n \in \Delta_{1} \cup \widetilde{\Delta}_{1}$, where $\Delta_{1}=\left\{\left(k q_{1}, k q_{2}-1\right): 1 \leq k \leq\right.$ $\delta, k \in \mathbb{N}\}$ and $\widetilde{\Delta}_{1}=\left\{\left(k q_{1}-1, k q_{2}\right): 1 \leq k \leq \delta, k \in \mathbb{N}\right\}$.

Proof. The sufficiency is easy to check, we only show the proof of necessity. If $n_{1}+n_{2}=m_{1}+m_{2}$, then $E_{3}=F_{3}$ and $E_{1} \sqcup E_{2}=F_{1} \sqcup F_{2}$. Since $n \neq m$, we have $n_{1} \neq m_{1}$. Without lose of generality, let $n_{1}>m_{1}$, then $n_{2}<m_{2}$. Eq. $E_{1} \sqcup E_{2}=F_{1} \sqcup F_{2}$ shows that

$$
\begin{aligned}
\max \left\{\frac{n_{1}}{N_{1}}, \frac{n_{2}}{N_{2}}\right\} & =\max \left\{\frac{m_{1}}{N_{1}}, \frac{m_{2}}{N_{2}}\right\} ; \\
\min \left\{\frac{n_{1}+1}{N_{1}}, \frac{n_{2}+1}{N_{2}}\right\} & =\min \left\{\frac{m_{1}+1}{N_{1}}, \frac{m_{2}+1}{N_{2}}\right\} .
\end{aligned}
$$

Thus

$$
\left\{\begin{array}{l}
\frac{n_{1}}{N_{1}}=\frac{m_{2}}{N_{2}} \\
\frac{m_{1}+1}{N_{1}}=\frac{n_{2}+1}{N_{2}} .
\end{array}\right.
$$

It follows that $\frac{m_{1}-n_{1}+1}{N_{1}}=\frac{n_{2}-m_{2}+1}{N_{2}}$. Since $m_{1}-n_{1}=n_{2}-m_{2}$ and $N_{1} \neq N_{2}$, we get $m_{1}-n_{1}+1=n_{2}-m_{2}+1=0$. Further, $\frac{n_{1}}{N_{1}}=\frac{m_{2}}{N_{2}}$ implies that $m_{2}=n_{2}+1=\frac{q_{2}}{q_{1}} n_{1}$. Thus there exists k such that $n_{1}=k q_{1}$. Then $m_{2}=k q_{2}$,
$n_{2}=k q_{2}-1$ and $m_{1}=k q_{1}-1$. To satisfy $n, m \in \Omega$, there is a confine that $k \in \mathbb{Z}_{+}$and $1 \leq k \leq \delta$. That is, $m=n+(-1,1) \in \widetilde{\Delta}_{1}$ for $n \in \Delta_{1}$.

If $n_{1}+n_{2}=m_{1}+m_{2} \pm 1$, there are three cases: (i) $n_{1}=m_{1}$; (ii) $n_{2}=m_{2}$; (iii) $n_{1} \neq m_{1}$ and $n_{2} \neq m_{2}$. We give the characterization of n and m, respectively.

Lemma 3.3. Let $\alpha \geq-1, n \in \Omega$. There is $m \in \Omega$ such that $m \sim n$ and $m \neq n$. Then the following statements hold.
(i) If $n_{1}=m_{1}$, then $\alpha \in \mathbb{Q}$ and there is an integer $0 \leq i_{0}<q_{1}$ such that $\frac{2+\alpha+i_{0}}{q_{1}} q_{2} \in \mathbb{Z}_{+}$. In this case, $(n, m) \in \Delta_{2} \cup \widetilde{\Delta}_{2}$, where $\Delta_{2}=\left\{\left(k q_{1}-2-\right.\right.$ $\left.\left.\alpha, k q_{2}\right): k=\frac{2+\alpha+i_{0}}{q_{1}}+i, 0 \leq i \leq \delta-1\right\}$ and $\widetilde{\Delta}_{2}=\left\{\left(k q_{1}-2-\alpha, k q_{2}-1\right):\right.$ $\left.k=\frac{2+\alpha+i_{0}}{q_{1}}+i, 0 \leq i \leq \delta-1\right\}$.
(ii) If $n_{2}=m_{2}$, then $\alpha \in \mathbb{Q}$ and there is integer $0 \lesssim j_{0}<q_{2}$ such that $\frac{2+\alpha+j_{0}}{q_{2}} q_{1} \in \mathbb{Z}_{+}$. In this case, $(n, m) \in \Delta_{3} \cup \widetilde{\Delta}_{3}$, where $\Delta_{3}=$ $\left\{\left(k q_{1}, k q_{2}-2-\alpha\right): k=\frac{2+\alpha+j_{0}}{q_{2}}+j, 0 \leq j \leq \delta-1\right\}$ and $\widetilde{\Delta}_{3}=$ $\left\{\left(k q_{1}-1, k q_{2}-2-\alpha\right): k=\frac{2+\alpha+j_{0}}{q_{2}}+j, 0 \leq j \leq \delta-1\right\}$.
(iii) If $n_{1} \neq m_{1}$ and $n_{2} \neq m_{2}$, then $\alpha \in \mathbb{N}$ and $q_{1}, q_{2} \in\{1+\alpha, 1\}$. Furthermore,
(a) if $q_{1}=1$, then $q_{2}=1+\alpha$ and $(n, m) \in \Delta_{4} \cup \widetilde{\Delta}_{4}$, where $\Delta_{4}=$ $\left\{\left(k q_{1}, k q_{2}-2-\alpha\right): 2 \leq k \leq \delta+1, k \in \mathbb{N}\right\}$ and $\widetilde{\Delta}_{4}=\left\{\left(k q_{1}-\right.\right.$ $\left.\left.2, k q_{2}-1-\alpha\right): 2 \leq k \leq \delta+1, k \in \mathbb{N}\right\}$.
(b) if $q_{2}=1$, then $q_{1}=1+\alpha$ and $(n, m) \in \Delta_{5} \cup \widetilde{\Delta}_{5}$, where $\Delta_{5}=$ $\left\{\left(k q_{1}-2-\alpha, k q_{2}\right): 2 \leq k \leq \delta+1, k \in \mathbb{N}\right\}$ and $\widetilde{\Delta}_{5}=\left\{\left(k q_{1}-1-\right.\right.$ $\left.\left.\alpha, k q_{2}-2\right): 2 \leq k \leq \delta+1, k \in \mathbb{N}\right\}$.

Proof. By Lemma 3.1, we assume $n_{1}+n_{2}=m_{1}+m_{2}+1$, or else exchanging $\left(n_{1}, n_{2}\right)$ and $\left(m_{1}, m_{2}\right)$. Therefore,

$$
\begin{equation*}
\widetilde{E}_{1} \sqcup \widetilde{E}_{2} \sqcup\left\{\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}\right\}=\widetilde{F}_{1} \sqcup \widetilde{F}_{2} \sqcup\left\{\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1\right\} . \tag{4}
\end{equation*}
$$

(i) By $n_{1}=m_{1}$, we have $n_{2}=m_{2}+1$. Eq. (2) implies that

$$
\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}=\frac{n_{2}}{N_{2}}
$$

that is $\frac{2+\alpha+n_{1}}{N_{1}}=\frac{n_{2}}{N_{2}}$. So there exists $k \geq 0$ such that $n_{2}=k q_{2}, n_{1}=k q_{1}-2-\alpha$. It follows that $n=\left(k q_{1}-2-\alpha, k q_{2}\right)$ and $m=n+(0,-1)=\left(k q_{1}-2-\alpha, k q_{2}-1\right) \in$ \Im_{n}. By $n, m \in \Omega$, we have $k q_{2}=\frac{2+\alpha+h}{q_{1}} q_{2} \in \mathbb{N}$ for some nonnegative integer $h=i_{0}+i q_{1}\left(0 \leq i_{0}<q_{1}, 0 \leq i \leq \delta-1\right)$. That is, $k=\frac{2+\alpha+h}{q_{1}}=\frac{2+\alpha+i_{0}}{q_{1}}+i$. Since $0 \leq i_{0}<q_{1}$, the choose of i_{0} is unique. So we finish the proof of necessity. The sufficiency is easy to check. So (i) holds.
(ii) By the symmetry of n_{1} and n_{2}, we have the statement (ii) holds.
(iii) First, if $n_{1}>m_{1}, n_{2} \neq m_{2}$ implies that $n_{2}+1 \leq m_{2}$ and $n_{1} \geq m_{1}+2$. Considering the maximum and minimum of Eq. (4), it is easy to see

$$
\begin{align*}
1+\frac{n_{1}}{N_{1}} & =\max \left\{1+\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}, 1+\frac{m_{2}}{N_{2}}\right\} \\
\frac{m_{1}+1}{N_{1}} & =\min \left\{\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}, \frac{n_{2}+1}{N_{2}}\right\} \tag{5}
\end{align*}
$$

We claim that

$$
\begin{equation*}
1+\frac{n_{1}}{N_{1}}=\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1 \tag{6}
\end{equation*}
$$

Or else, assume $\frac{n_{1}}{N_{1}}+1=\frac{m_{2}}{N_{2}}+1>\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}+1$. Clearly

$$
\frac{2+\alpha+m_{2}}{N_{2}}>\frac{m_{2}}{N_{2}}=\frac{n_{1}}{N_{1}} \geq \frac{m_{1}+1}{N_{1}} .
$$

Therefore,

$$
\frac{m_{1}+1}{N_{1}}<\frac{3+\alpha+m_{1}+m_{2}}{N_{1}+N_{2}}=\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}} .
$$

So (5) implies that

$$
\begin{equation*}
\frac{n_{2}+1}{N_{2}}=\frac{m_{1}+1}{N_{1}} . \tag{7}
\end{equation*}
$$

Since $n_{1}+n_{2}=m_{1}+m_{2}+1$, we get $\frac{m_{2}-n_{2}-1}{N_{2}}=\frac{n_{1}-m_{1}-1}{N_{1}}=\frac{m_{2}-n_{2}}{N_{1}}$. Let $m_{2}-n_{2}=p q_{1}$, then $m_{2}-n_{2}-1=p q_{2}$. That is, $p \in \mathbb{N}$ and $1=p\left(q_{1}-q_{2}\right)$. Therefore, $p=1, q_{1}=q_{2}+1$, forcing $N_{1} \geq 2$ and $N_{1}>N_{2}$. Then $1+\frac{n_{1}-1}{N_{1}}>$ $1+\frac{m_{2}-1}{N_{2}}$. The Eq. (4) shows that

$$
\begin{equation*}
1+\frac{n_{1}-1}{N_{1}}=1+\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}} \tag{8}
\end{equation*}
$$

If $\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}} \in \widetilde{F}_{2}$, then $\operatorname{Card} \widetilde{F}_{2}=\operatorname{Card} \widetilde{E}_{2} \geq 2$. By $N_{1}>N_{2}$, we have $\frac{n_{2}+2}{N_{2}}>\frac{m_{1}+2}{N_{1}}$. The equalities (7) and (8) show that $\frac{m_{1}+2}{N_{1}} \notin \widetilde{E}_{1} \sqcup \widetilde{E}_{2} \sqcup$ $\left\{\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}\right\}$, which is a contradiction.

If $\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}} \in \widetilde{F}_{1}$, then

$$
\begin{equation*}
\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}=\frac{m_{1}+2}{N_{1}} . \tag{9}
\end{equation*}
$$

In fact, equality (8) implies that

$$
\begin{equation*}
\left\{z \in \widetilde{F}_{1}: z<\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}\right\}=\left\{z \in \widetilde{E}_{2}: z<\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}\right\} \tag{10}
\end{equation*}
$$

Since $N_{1} \neq N_{2}$, we have $\operatorname{Card}\left\{z \in \widetilde{F}_{1}: z<\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}\right\}=1$. So (9) holds.
Combining (8) and (9), we get $n_{1}=m_{1}+3$. It means that $q_{1}=m_{2}-n_{2}=2$ and $q_{2}=1$. By (7) and (9), we have $\frac{2+\alpha}{N_{2}}=\frac{1}{N_{1}}$, i.e., $2(2+\alpha)=1$, which is contradict with $\alpha>-1$. So we get the claim.

By (6), there is

$$
\begin{equation*}
\frac{2+\alpha+n_{2}}{N_{2}}=\frac{n_{1}}{N_{1}} . \tag{11}
\end{equation*}
$$

It follows that

$$
\left\{\begin{array}{l}
n_{1}=k q_{1} \tag{12}\\
n_{2}=k q_{2}-2-\alpha
\end{array}\right.
$$

for some $k \geq 2+\alpha$. Therefore,

$$
\begin{equation*}
\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}=\frac{k}{\delta}>\frac{k q_{2}-(1+\alpha)}{\delta q_{2}}=\frac{n_{2}+1}{N_{2}} \tag{13}
\end{equation*}
$$

Then Eq. (5) deduces that

$$
\begin{equation*}
\frac{m_{1}+1}{N_{1}}=\frac{n_{2}+1}{N_{2}}, \text { i.e., } m_{1}+1=k q_{1}-\frac{(1+\alpha) q_{1}}{q_{2}} . \tag{14}
\end{equation*}
$$

If $N_{1}=1$, then $N_{2}>1$. Since $m_{2}-n_{2}>1$, we have $\frac{n_{2}+2}{N_{2}} \in \widetilde{E_{2}}$, but $\frac{n_{2}+2}{N_{2}} \notin \widetilde{F}_{1} \sqcup \widetilde{F}_{2} \sqcup \widetilde{E}_{3}$, which is a contradiction.

If $N_{1}>1$, then

$$
\max \left\{1+\frac{n_{1}-1}{N_{1}}, \frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}\right\}=1+\frac{m_{2}}{N_{2}}
$$

By Eq. (11), we have $\frac{2+\alpha+n_{1}+n_{2}}{N_{1}+N_{2}}<\frac{n_{1}-1}{N_{1}}+1$. Therefore,

$$
\frac{n_{1}-1}{N_{1}}=\frac{m_{2}}{N_{2}} .
$$

It follows that $m_{2}=k q_{2}-\frac{q_{2}}{q_{1}} \in \mathbb{Z}_{+}$. Combining $n_{1}+n_{2}=m_{1}+m_{2}+1$ with (12), (14) and $N_{1} \neq N_{2}$, we conclude that $\frac{q_{2}}{q_{1}}=1+\alpha$. Therefore, $q_{2}=1+\alpha$, $q_{1}=1$, and $\alpha \in \mathbb{N}$. In this case, $\left(m_{1}, m_{2}\right)=\left(n_{1}-2, n_{2}+1\right)$ and $(n, m) \in \Delta_{4}$.

Next, if $n_{1}<m_{1}$, we have $n_{2}>m_{2}+1$ and $n_{1}+1<m_{1}$. Since n_{1} and n_{2} are symmetric; m_{1} and m_{2} are symmetric, it is easy to check that $q_{2}=1$, $q_{1}=1+\alpha$, and $(n, m) \in \Delta_{5}$. So (iii) holds.

Remark 3.4. In above lemma, the number k in condition (i) and (ii) is not always an integer. If n and m satisfy one of the conditions (i), (ii) and (iii), then $n \sim m$ and $n \neq m$.

Notice that $\Delta_{1} \neq \emptyset$ and does not change with α. However, $\left\{\Delta_{i}\right\}(i=2,3,4,5)$ heavily depend on the α, and some of them may be empty. By careful computation, we know that each two of $\left\{\Delta_{i}, \widetilde{\Delta}_{i}: i=1, \ldots, 5\right\}$ are either equal or disjoint. Therefore, we assert that the Card of \Im_{n} heavily depend on the α.

For the case that $\alpha=-1$, it is easy to see that $\Delta_{4}=\Delta_{5}=\emptyset, \widetilde{\Delta}_{1}=\Delta_{2}$ and $\widetilde{\Delta}_{2}=\widetilde{\Delta}_{3}$. So we have the following result.

Lemma 3.5. If $\alpha=-1$, then $\Im_{n} \neq\{n\}$ if and only if

$$
\Im_{n}=\left\{\left(k q_{1}, k q_{2}-1\right),\left(k q_{1}-1, k q_{2}\right),\left(k q_{1}-1, k q_{2}-1\right)\right\}
$$

for some $1 \leq k \leq G C D\left(N_{1}, N_{2}\right)$.
For the case that $\alpha>-1$, we have the following statements hold.
1° If $\alpha \in(-1,+\infty) \backslash \mathbb{Q}$, then $\Delta_{i}=\emptyset$ for $i=2,3,4,5$. Therefore, $\operatorname{Card}_{n} \neq 1$ if and only if $\operatorname{Card} \Im_{n}=2$ for $n \in \Delta_{1} \cup \widetilde{\Delta}_{1}$.
2° If $\alpha \in(\mathbb{Q} \cap(-1,+\infty)) \backslash \mathbb{Z}_{+}$, then $\Delta_{4}=\Delta_{5}=\emptyset$. Therefore, $\operatorname{Card}_{\Im_{n}} \neq 1$ if and only if $\operatorname{Card} \Im_{n}=2$, and $n \in \Delta_{1} \cup \widetilde{\Delta}_{1} \cup \Delta_{2} \cup \widetilde{\Delta}_{2} \cup \Delta_{3} \cup \widetilde{\Delta}_{3}$. Moreover, Δ_{2} and Δ_{3} are not non-empty sets at the same time. In fact, let $\alpha=\frac{q}{p}$ where $p, q \in \mathbb{Z}, p>1, q>-p$ and $\operatorname{GCD}(p,|q|)=1$. By $\frac{2+\alpha+i_{0}}{q_{1}} q_{2} \in \mathbb{Z}_{+}$, it is easy to see $\left(2+\alpha+i_{0}\right) q_{2}=\frac{\left(2+i_{0}\right) p+q}{p} q_{2} \in \mathbb{Z}_{+}$. Since $\operatorname{GCD}(p,|q|)=1$, we have $\operatorname{GCD}\left(\left(2+i_{0}\right) p+q, p\right)=1$. So $p \mid q_{2}$. Similar, $\frac{2+\alpha+j_{0}}{q_{2}} q_{1} \in \mathbb{Z}_{+}$implies that $p \mid q_{1}$. Thus we get $p=1$, which is a contradiction.
3° If $\alpha \in \mathbb{Z}_{+}$, then Δ_{2} and Δ_{3} are not empty.
(1) If $N_{2} \neq(1+\alpha) N_{1}$ and $N_{1} \neq(1+\alpha) N_{2}$, then $\delta_{4}=\delta_{5}=\emptyset$. Therefore, $\operatorname{Card} \Im_{n} \neq 1$ if and only if $\operatorname{Card} \Im_{n}=2$, for $n \in \Delta_{1} \cup \widetilde{\Delta}_{1} \cup \Delta_{2} \cup \widetilde{\Delta}_{2} \cup$ $\Delta_{3} \cup \widetilde{\Delta}_{3}$.
(2) If $N_{2}=(1+\alpha) N_{1}, \alpha \neq 0$, then $\Delta_{5}=\emptyset, \Delta_{1}=\widetilde{\Delta}_{3}, \widetilde{\Delta}_{1}=\widetilde{\Delta}_{4}$ and $\Delta_{3}=\Delta_{4} . \operatorname{Card}_{n} \neq 1$ if and only if $\operatorname{Card}_{n}=2$ or $\operatorname{Card}_{n}=3$. Moreover, $\operatorname{Card} \Im_{n}=2$ if and only if $n \in \Delta_{2} \cup \widetilde{\Delta}_{2}$; $\operatorname{Card} \Im_{n}=3$ if and only if $n \in \Delta_{1} \cup \Delta_{1} \cup \Delta_{3}$. In this case, $n \sim n+(-1,1) \sim n+(1,0)$ for $n \in \Delta_{1}$.
(3) If $N_{1}=(1+\alpha) N_{2}, \alpha \neq 0$, then $\Delta_{4}=\emptyset, \widetilde{\Delta}_{1}=\widetilde{\Delta}_{2}, \Delta_{2}=\Delta_{5}$ and $\widetilde{\Delta}_{5}=\Delta_{1} . \operatorname{Card} \Im_{n} \neq 1$ if and only if $\operatorname{Card}_{n}=2$ or $\operatorname{Card}_{n}=3$. Moreover, $\operatorname{Card}_{n}=2$ if and only if $n \in \Delta_{3} \cup \widetilde{\Delta}_{3}$; $\operatorname{Card} \Im_{n}=3$ if and only if $n \in \Delta_{1} \cup \widetilde{\Delta}_{1} \cup \Delta_{2}$. In this case, $n \sim n+(-1,1) \sim n+(-1,2)$ for $n \in \Delta_{1}$.
Combining above analysis and the results in section two, we have the following results. Recall that $\delta=G C D\left(N_{1}, N_{2}\right)$.
Theorem 3.6. On the Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{2}\right)$ with $\alpha \in(-1,+\infty) \backslash \mathbb{Q}, \mathcal{V}^{*}\left(z^{N}\right)$ is *-isomorphic to

where $N=\left(N_{1}, N_{2}\right)$ and $N_{1} \neq N_{2}$.
Theorem 3.7. On the Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{2}\right)$ with $\alpha \in(\mathbb{Q} \cap(-1,+\infty)) \backslash \mathbb{Z}_{+}$, $\mathcal{V}^{*}\left(z^{N}\right)$ is $*$-isomorphic to

$$
\bigoplus_{i=1}^{s} M_{2}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{+\infty} \mathbb{C}
$$

where $s \in\{\delta, 2 \delta\}$, where $N=\left(N_{1}, N_{2}\right)$ and $N_{1} \neq N_{2}$.
Example 3.8. Let $\alpha=\frac{2}{5}, N_{1}=6, N_{2}=9$. Then $\Delta_{1}=\{(2,2),(4,5),(6,8)\}$, $\Delta_{2}=\Delta_{3}=\Delta_{4}=\Delta_{5}=\emptyset$. So on the Bergman space $A_{\frac{2}{5}}^{2}\left(\mathbb{B}_{2}\right), \mathcal{V}^{*}\left(z_{1}^{6} z_{2}^{9}\right)$ is *-isomorphic to

$$
\bigoplus_{i=1}^{3} M_{2}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{+\infty} \mathbb{C}
$$

Example 3.9. Let $\alpha=\frac{2}{3}, N_{1}=6, N_{2}=9$. It is easy to check that (1) $\Delta_{1}=$ $\{(2,2),(4,5),(6,8)\} ;(2) \Delta_{3}=\Delta_{4}=\Delta_{5}=\emptyset ;(3) \Delta_{2}=\{(0,4),(2,7),(4,10)\}$ with $k=1+\frac{1}{3}, 2+\frac{1}{3}, 3+\frac{1}{3}$, respectively. Then on the Bergman space $A_{\frac{2}{3}}^{2}\left(\mathbb{B}_{2}\right)$, $\mathcal{V}^{*}\left(z_{1}^{6} z_{2}^{9}\right)$ is $*$-isomorphic to

$$
\bigoplus_{i=1}^{6} M_{2}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{+\infty} \mathbb{C}
$$

Theorem 3.10. Let $N=\left(N_{1}, N_{2}\right)$ and $N_{1} \neq N_{2}$. On the Bergman space $A_{\alpha}^{2}\left(\mathbb{B}_{2}\right)$ with $\alpha \in \mathbb{Z}_{+}$, the following statements hold:
(i) if $N_{1} \neq(1+\alpha) N_{2}$ and $N_{2} \neq(1+\alpha) N_{1}$, then $\mathcal{V}^{*}\left(z^{N}\right)$ is $*$-isomorphic to

$$
\bigoplus_{i=1}^{3 \delta} M_{2}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{+\infty} \mathbb{C}
$$

(ii) if $N_{1}=(1+\alpha) N_{2}$ or $N_{2}=(1+\alpha) N_{1}$, then $\mathcal{V}^{*}\left(z^{N}\right)$ is $*$-isomorphic to

$$
\bigoplus_{i=1}^{\delta} M_{3}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{\delta} M_{2}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{+\infty} \mathbb{C}
$$

Example 3.11. If $\alpha=4, N_{1}=6, N_{2}=9$, then $\Delta_{1}=\{(2,2),(4,5),(6,8)\}$, $\Delta_{2}=\{(0,9),(2,12),(4,15)\}, \Delta_{3}=\{(4,0),(6,3),(8,6)\}, \Delta_{4}=\Delta_{5}=\emptyset$. On the Bergman space $A_{4}^{2}\left(\mathbb{B}_{2}\right), \mathcal{V}^{*}\left(z_{1}^{6} z_{2}^{9}\right)$ is $*$-isomorphic to

$$
\bigoplus_{i=1}^{9} M_{2}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{+\infty} \mathbb{C}
$$

Example 3.12. If $\alpha=2, N_{1}=3, N_{2}=9$, then $\Delta_{1}=\widetilde{\Delta}_{3}=\{(1,2),(2,5),(3,8)\}$, $\Delta_{2}=\{(0,12),(1,15),(2,18)\}, \Delta_{3}=\Delta_{4}=\{(2,2),(3,5),(4,8)\}$ and $\Delta_{5}=\emptyset$. On the Bergman space $A_{2}^{2}\left(\mathbb{B}_{2}\right), \mathcal{V}^{*}\left(z_{1}^{6} z_{2}^{9}\right)$ is $*$-isomorphic to

$$
\bigoplus_{i=1}^{3} M_{3}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{3} M_{2}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{+\infty} \mathbb{C}
$$

Theorem 3.13. On the Hardy space $H^{2}\left(\mathbb{B}_{2}\right), \mathcal{V}^{*}\left(z^{N}\right)$ is $*$-isomorphic to

$$
\bigoplus_{i=1}^{\delta} M_{3}(\mathbb{C}) \bigoplus \bigoplus_{i=1}^{+\infty} \mathbb{C}
$$

where $N=\left(N_{1}, N_{2}\right)$ and $N_{1} \neq N_{2}$.
Acknowledgments. The authors thank the reviewer very much for his helpful suggestions which led to the present version of this paper.

References

[1] M. Albaseer, Y. Lu, and Y. Shi, Reducing subspaces for a class of Toeplitz Operators on the Bergman space of the bidisk, Bull. Korean Math. Soc. 52 (2015), no. 5, 1649-1660.
[2] H. Dan and H. Huang, Multiplication operators defined by a class of polynomials on $L_{a}^{2}\left(\mathbb{D}^{2}\right)$, Integral Equations Operator Theory 80 (2014), no. 4, 581-601.
[3] K. Guo and H. Huang, Multiplication operators on the Bergman space, Lecture Notes in Mathematics, 2145, Springer, 2015.
[4] Y. Lu and X. Zhou, Invariant subspaces and reducing subspaces of weighted Bergman space over bidisk, J. Math. Soc. Japan 62 (2010), no. 3, 745-765.
[5] L. Shan, Reducing subspaces for a class of analytic Toeplitz operators on the bidisc, J. Fudan Univ. Nat. Sci. 42 (2003), no. 2, 196-200.
[6] Y. Shi and Y. Lu, Reducing subspaces for Toeplitz operators on the polydisk, Bull. Korean Math. Soc. 50 (2013), no. 2, 687-696.
[7] X. Wang, H. Dan, and H. Huang, Reducing subspaces of multiplication operators with the symbol $\alpha z^{k}+\beta w^{l}$ on $L_{a}^{2}\left(\mathbb{D}^{2}\right)$, Sci. China Math. 58 (2015), no. 10, 2167-2180.

Bin Liu
School of Mathematical Sciences
Ocean University of China
Qingdao 266100, P. R. China
E-mail address: liubin_taixi@163.com
Yanyue Shi
School of Mathematical Sciences
Ocean University of China
Qingdao 266100, P. R. China
E-mail address: shiyanyue@163.com

