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REDUCING SUBSPACES OF A CLASS OF

MULTIPLICATION OPERATORS

Bin Liu and Yanyue Shi

Abstract. Let MzN (N ∈ Z
d
+) be a bounded multiplication operator on

a class of Hilbert spaces with orthogonal basis {zn : n ∈ Z
d
+}. In this

paper, we prove that each reducing subspace of MzN is the direct sum
of some minimal reducing subspaces. For the case that d = 2, we find
all the minimal reducing subspaces of MzN (N = (N1, N2), N1 6= N2) on

weighted Bergman space A
2
α(B2)(α > −1) and Hardy space H

2(B2), and
characterize the structure of V∗(zN ), the commutant algebra of the von
Neumann algebra generated by MzN .

1. Introduction

Let T be a bounded linear operator on a Hilbert space. If M is a closed
subspace satisfying TM ⊆ M, then M is called an invariant subspace of T .
In addition, if M also is invariant subspace of T ∗, then M is called a reducing

subspace of T . Combining the methods in analysis, algebra and geometry,
the reducing subspaces of multiplication operators with Blaschke products are
characterized. The details can be found in the book [3] and its references.

On the polydisk, the research begins with some special functions. The reduc-
ing subspaces of Mzn

1
zm
2

are described in [4, 5, 6]. For p(z1, z2) = αzn1 +βzm2 or
zn1 z

m
2 , the reducing subspaces of Toeplitz operator Tp are described in [1, 2, 7].

A reducing subspace M is called minimal if there is no nonzero reducing sub-
space N such that N is a proper subspace of M. For N1 6= N2, the results in
[6] shows that M

z
N1

1
z
N2

2

has more minimal reducing subspaces on unweighted

Bergman space than on the weighted Bergman space in several cases. It is
prove that all Ln,m = span{zn+lN1

1 zm+lN2

2 : l ∈ Z+} are the only minimal
reducing subspaces of M

z
N1

1
z
N2

2

on A2
α(D

2) with α > −1 and α 6= 0. While

on the unweighted Bergman space A2(D2), L∗

n,m = span{azn+hN1

1 zm+hN2

2 +

bz
ρ1(m+hN2)
1 z

ρ2(n+hN1)
2 ;h = 0, 1, 2, . . .} (a, b ∈ C) are all the minimal reducing

Received July 25, 2016; Revised October 12, 2016; Accepted November 29, 2016.
2010 Mathematics Subject Classification. Primary 47B35; Secondary 47C15.
Key words and phrases. multiplication operator, reducing subspace, commutant algebra,

unit ball.
This research is partially supported by NSFC No. 11201438, 11171315.

c©2017 Korean Mathematical Society

1443



1444 B. LIU AND Y. SHI

subspaces of M
z
N1

1
z
N2

2

, if ρ1(m) = (m+1)N1

N2

− 1 and ρ2(n) = (n+1)N2

N1

− 1 are

nonnegative integers.
Denote by Z+ and N the set of all the nonnegative integers and all the

positive integers, respectively. For d ∈ N, write m = (m1,m2, . . . ,md) ∈ Z
d
+,

zm = z1
m1z2

m2 · · · zd
md , m! = m1!m2! · · ·md! and |m| = m1 +m2 + · · ·+md.

Let H be a Hilbert space with the orthogonal basis {zm}m∈Z
d
+

, and satisfy

that the multiplication operator Mq is bounded for each polynomial q. This
kind of space contains a lot of classical spaces, such as weighted Bergman
spaces over polydisk A2

α(D
d), weighted Bergman spaces over unit ball A2

α(Bd),
Hardy space over unit ball H2(Bd), and so on. Recall that Bd = {z ∈ C

d :
∑d

i=1 |zi|
2 < 1} and S = {z ∈ C

d :
∑d

i=1 |zi|
2 = 1}. Denote by dσ the Haar

measure on S, and by H(Bd) all the analytic functions on Bd. The Hardy space
H2(Bd) is defined by

H2(Bd) = {f ∈ H(Bd) : lim
r→1−

∫

S

|f(rz)|2dσ < +∞}.

Let dA(z) denote the normalized area measure over Bd, and let dAα(z) =
Cα(1− |z|2)αdA(z), where Cα is a constant such that dAα is normalized. The
weighted Bergman space A2

α(Bd) is the Hilbert space of all holomorphic func-
tions over Bd, which are square integrable with respect to dAα(z).

Guo and Huang [3] point that M is a nonzero reducing subspace for MzN =
Mz1

N1z2
N2 ···zd

Nd on the Hilbert space H if and only if

M =
⊕

n

[Mn],

where [Mn] is the closure of the linear span of {zkNMn}(k ≥ 0) and Mn is
a closed linear subspace of En = span{zm : M∗h

zNM
h
zN z

m = M∗h
zNM

h
zN z

n, ∀h ∈

Z+}, where n ∈ {m = (m1,m2, . . . ,md) ∈ Z
d
+ : 0 ≤ mi < Ni for some i}.

In this paper, we continue to consider the reducing subspaces of MzN on
H, and prove that every [Mn] is the direct sum of some minimal reducing
subspaces. In particular, on A2

α(B2) and H2(B2), we describe all the minimal
reducing subspaces ofM

z
N1

1
z
N2

2

with N1 6= N2, and characterize the commutant

algebra V∗(zN1

1 zN2

2 ).

2. The results in general Hilbert space

Let H be the Hilbert space defined in above section, and

Ω = {n = (n1, n2, . . . , nd) ∈ Z
d
+ : 0 ≤ ni < Ni for some i}.

Define an equivalence on Ω by

q ∼ n ⇔
γq+hN

γq
=

γn+hN

γn
, ∀h ≥ 1,

where γm = ‖ zm ‖
2
. For n ∈ Ω, set ℑn := {q ∈ Ω : q ∼ n} and Hn :=

span{zJ : J ∈ ℑn}. Then ∪n∈Fℑn = Ω and ⊕n∈FHn = span{zJ : J ∈ Ω},
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where F is the partition of Ω by the equivalence ∼. Let Pm be the orthogonal
projection from H onto Hm. Denote by M the multiplication operator MzN .
It is easy to check that

M∗(zm+hN ) =
γm+hN

γm+(h−1)N
zm+(h−1)N

M∗hMhzm =
γm+hN

γm
zm

for any m ∈ ℑn and h ∈ N. For n ∈ Ω, denote by ˜Pn the orthogonal projection
from H onto span{zJ :

γJ+hN

γJ
=

γn+hN

γn
, J ∈ Z

d
+, ∀h ∈ Z+}. By the spectrum

decomposition, we see that ˜Pn is in the von Neumann algebra generated by
MzN . For every reducing subspace M of M , denote by PM the orthogonal

projection from H onto M. Therefore, ˜PnPM = PM
˜Pn. Since

〈PMzm, zl〉 = 〈PMzm,Mzl−N〉 = 〈PMM∗zm, zl−N〉 = 0

for l /∈ Ω and m ∈ Ω, we have PMzm ∈ span{zJ : J ∈ Ω} and PMzl⊥{zJ : J ∈
Ω}. Therefore, PnPM = PMPn.

In the following, we prove that each nonzero reducing subspace for MzN

always contains a minimal reducing subspace, and every reducing subspace is
the direct sum of several minimal reducing subspaces.

Theorem 2.1. Suppose M be a nonzero reducing subspace of M on H. Then

M =
⊕

n∈F

[Mn] =
⊕

n∈F

qn
⊕

j=1

[enj ],

where {enj}
qn
j=1 (1 ≤ qn ≤ +∞) is the orthogonal basis of Mn 6= {0}.

Proof. (1) Choose a nonzero function g in M. Let h0 be the minimal nonneg-
ative integer such that

PΩM
∗h0(g) 6= 0,

where PΩ is the orthogonal projection from H onto span{zJ : J ∈ Ω}.

Clearly, there exists n ∈ Ω, such that f = PnPΩM
∗h0g 6= 0. In this case,

f = PnPMM∗h0g = PMPnM
∗h0g = ΣJ∈ℑn

bJz
J . Then f ∈ M ∩ Hn. By

f ∈ Hn, we obtain that

M∗q(fzhN) =

{

γn+hN

γn+(h−q)N
fz(h−q)N if h ≥ q ≥ 0

0 if q > h ≥ 0.

Moreover, M q(fzhN) = fz(h+q)N for h, q ≥ 0; fzh1N ⊥ fzh2N with h1 6= h2,
since

〈fzh1N , fzh2N 〉 = 〈Mh1f,Mh2f〉

=

{ γn+(h1−1)N

γn+(h1−h2−1)N
〈fz(h1−h2−1)N ,M∗f〉, if h1 > h2 ≥ 0

γn+(h2−1)N

γn+(h2−h1−1)N
〈M∗f, fz(h2−h1−1)N 〉, if h2 > h1 ≥ 0
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= 0.

Thus, we conclude that [f ] = span{fzhN : h ∈ Z+} =
⊕+∞

h=0 span{fz
hN} ⊂ M

is a reducing subspace of M . It is easy to see that [f1] = [f ] for each f1 ∈ [f ].
Thus [f ] is minimal.

(2) Denote by Mn = PnM. Notice that PnM⊥PmM for m /∈ ℑn. If
PnM 6= {0}, choose an orthogonal basis {enj}

qn
j=1(1 ≤ qn ≤ +∞) of PnM.

Notice that [enj ] ⊥ [emi] for (n, j) 6= (m, i), since

〈enjz
h1N , emiz

h2N 〉

= 〈Mh1enj ,M
h2emi〉

=















γn+(h1−1)N

γn+(h1−h2−1)N
〈enjz

(h1−h2−1)N ,M∗emi〉, if h1 > h2 ≥ 0
γm+(h2−1)N

γm+(h2−h1−1)N
〈M∗enj , emiz

(h2−h1−1)N 〉, if h2 > h1 ≥ 0
γm+hN

γm
〈enj , emi〉, if h2 = h1 = h ≥ 0

= 0.

By the result in (1), we know that [enj] =
+∞
⊕

h=0

Cenjz
hN is a minimal reducing

subspace of M . Thus [PnM] =
+∞
⊕

h=0

zhNPnM =
+∞
⊕

h=0

qn
⊕

j=1

Cenjz
hN =

qn
⊕

j=1

[enj].

So we finish the proof. �

Put V∗(zN) the commutant algebra of the von Neumann algebra generated
by MzN . Then V∗(zN) is a von Neumann algebra and is the norm closed linear
span of its projections. Recall that two reducing subspaces M1 and M2 of MzN

are called unitarily equivalent if there exists a unitary operator U from M1 onto
M2 and U commutes with MzN . One can show that M1 is unitarily equivalent
to M2 if and only if PM1

and PM2
are equivalent in V∗(zN), that is, there is a

partial isometry V in V∗(zN) such that

V ∗V = PM1
, V V ∗ = PM2

.

Proposition 2.2. Let n,m ∈ Ω and enj, emi be defined as in Theorem 2.1.

Then the following statements hold.

(i) Ln = [zn] and Lm = [zm] are unitarily equivalent if and only if n ∼ m;
(ii) [enj] and [emi] are unitarily equivalent if and only if n ∼ m.

Proof. (i) On the one hand, assume that Ln and Lm are unitatily equivalent,
then there is a partial isometry U ∈ V∗(zN) such that U |Ln

is a unitary operator
from Ln onto Lm. Obviously, UM∗M(zn+hN) = M∗MU(zn+hN). It follows
that

γn+(h+1)N

γn
U(zn+hN) =

γm+(h+1)N

γm
U(zn+hN).

Since U(zn+hN) 6= 0, we have
γn+(h+1)N

γn+hN
=

γm+(h+1)N

γm+hN
for h ≥ 0, i.e., n ∼ m.
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On the other hand, if n ∼ m, let

U(zJ) =

{
√

γn

γm
zm+hN , if J = n+ hN

0, if J 6= n+ hN

for h = 0, 1, 2, . . .. Then U is a partial isometry on H and U |Ln
is a unitary

operator from Ln onto Lm. It is easy to check that U ∈ V∗(zN ) by direct
calculation.

(ii) Let Pnj be the orthogonal projection from H onto [enj ]. Obviously,
there is n0 ∼ n such that 〈enj , z

n0〉 6= 0, that is, Pn0
Pnj 6= 0. Notice that

Pnj and Pn0
are all minimal projection in V∗(zN ). As in [7], we have Pnj

is unitarily equivalent to Pn0
. Similarly, there is m0 ∼ m such that Pmi is

unitarily equivalent to Pm0
. Therefore, [enj ] is unitarily equivalent to [emi]

if and only if Ln0
is unitarily equivalent to Lm0

. By (i), we get the desired
result. �

3. The results on A
2

α(B2) and H
2(B2)

In this section, we consider the reducing subspaces ofM
z
N1

1
z
N2

2

withN1, N2 ≥

1 and N1 6= N2 on the weighted Bergman space A2
α(B2)(α > −1) and the

Hardy space H2(B2). Let n ∈ Z
2
+. Denote by (n+ hN)! =

2
∏

i=1

(ni + hNi)! and

|n+ hN | =
2
∑

i=1

(ni + hNi). On A2
α(B2), we have

γn+hN = ‖zn+hN‖2α = Γ(α+ 3)(n+ hN)!/Γ(α+ 3 + |n+ hN |)

for α > −1. Obviously, {zm/
√
γm}m∈Z

2

+

is an orthogonal basis of A2
α(B2).

Notice that on the Hardy space H2(B2), γn+hN = ‖zn+hN‖2 = (n+hN)!/(1+
|n+ hN |)! = Γ(α+ 3)(n+ hN)!/Γ(α+ 3 + |n+ hN |) with α = −1.

By Proposition 2.2, we know that the unitarily equivalent of reducing sub-
spaces is converted to the equivalence of some numbers. So the relevant research
on Bergman space A2

α(B2) and that on the Hardy space H2(B2) are similar. In
the following, define

γn+hN = Γ(α+ 3)(n+ hN)!/Γ(α+ 3 + |n+ hN |)

for α ≥ −1 and n ∈ Z
2
+.

As in above section, define

Ω = {(n1, n2) ∈ Z
2
+ : 0 ≤ ni < Ni for some i},

and

q ∼ n ⇔
γq+hN

γq
=

γn+hN

γn
, ∀h ≥ 1

for q, n ∈ Ω. Since

lim
h→∞

γq+hN

γn+hN

= lim
h→∞

(q + hN)!Γ(α+ 3 + |n+ hN |)

(n+ hN)!Γ(α+ 3 + |q + hN |)
= 1,
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q ∼ n if and only if γq+hN = γn+hN , ∀h ∈ Z+.
If m ∈ ℑn, then

(1)
γn+hN

γn+(h+1)N
=

γm+hN

γm+(h+1)N
, ∀h ∈ Z+.

Since Γ(x+ 1) = xΓ(x) for x > 0, we get

N1+N2
∏

j=1

(α+ 2 + n1 + hN1 + n2 + hN2 + j)

2
∏

i=1

Ni
∏

j=1

(ni + hNi + j)

=

N1+N2
∏

j=1

(α+ 2 +m1 + hN1 +m2 + hN2 + j)

2
∏

i=1

Ni
∏

j=1

(mi + hNi + j)

.

Let g(λ) =
N1+N2
∏

j=1

(α + 2 + n1 + n2 + λ(N1 +N2) + j)
2
∏

i=1

Ni
∏

j=1

(mi + λNi + j) −

N1+N2
∏

j=1

(α+ 2+m1 +m2 + λ(N1 +N2) + j)
2
∏

i=1

Ni
∏

j=1

(ni + λNi + j). Obviously, g

is a polynomial over C and g(h) = 0 for any h ∈ Z+. By fundamental theorem
of algebra, g(λ) ≡ 0 for all λ ∈ C. Set

E1 = {n1+j

N1

: j = 1, 2, . . . , N1}; E2 = {n2+j

N2

: j = 1, 2, . . . , N2};

E3 = { 2+α+n1+n2+j

N1+N2

: j = 1, 2, . . . , N1 +N2};

F1 = {m1+j
N1

: j = 1, 2, . . . , N1}; F2 = {m2+j
N2

: j = 1, 2, . . . , N2};

F3 = { 2+α+m1+m2+j

N1+N2

: j = 1, 2, . . . , N1 +N2}.

Therefore,

E1 ⊔ E2 ⊔ F3 = F1 ⊔ F2 ⊔ E3.(2)

Denote by δ = GCD(N1, N2), then Ni = δqi for i = 1, 2 and GCD(q1, q2) = 1.

Lemma 3.1. Let α ≥ −1, n,m ∈ Ω such that n ∼ m and n 6= m. Then

n1 + n2 = m1 +m2 or n1 + n2 = m1 +m2 ± 1.

Proof. Without lose of generality, assume n1+n2 > m1+m2+1 and n1 > m1.

Denote by ˜Ei = Ei \ Fi and ˜Fi = Fi \ Ei for i = 1, 2, 3. Then ˜Ei ∩ ˜Fi = ∅ and

˜E1 ⊔ ˜E2 ⊔ ˜F3 = ˜F1 ⊔ ˜F2 ⊔ ˜E3.(3)

Clearly, 2+α+n1+n2

N1+N2

+1, 1+α+n1+n2

N1+N2

+1 ∈ ˜E1⊔ ˜E2 and
3+α+m1+m2

N1+N2

, 4+α+m1+m2

N1+N2

∈

˜F1 ⊔ ˜F2. Furthermore, for i, j ∈ {1, 2} we claim that

(a) if 2+α+n1+n2

N1+N2

+ 1 ∈ ˜Ei, then
1+α+n1+n2

N1+N2

+ 1 ∈ ˜Ej for j 6= i.

(b) if 3+α+m1+m2

N1+N2

∈ ˜Fi, then
4+α+m1+m2

N1+N2

∈ ˜Fj for j 6= i.
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In fact, if 2+α+n1+n2

N1+N2

+ 1, 1+α+n1+n2

N1+N2

+ 1 ∈ ˜Ei for some i ∈ {1, 2}, there are
integers 1 ≤ pi, qi ≤ Ni such that

2 + α+ n1 + n2

N1 +N2
+ 1 =

ni + pi

Ni

1 + α+ n1 + n2

N1 +N2
+ 1 =

ni + qi

Ni

.

Then 0 6= 1
N1+N2

= pi−qi
Ni

> pi−qi
N1+N2

≥ 1
N1+N2

, which is a contradiction. So (a)

holds. Since the proof of (a) and (b) are similar, we omit the details of (b).
Next, we find the contradictions for three cases respectively.

(1) If m2 > n2, then min ˜F2 > max ˜E2. Since one of 2+α+n1+n2

N1+N2

+ 1 and
1+α+n1+n2

N1+N2

+1 is in ˜E2, λ > max ˜E2 ≥ 1+α+n1+n2

N1+N2

+1 > max ˜F3 for λ ∈ ˜F2. It

means that ˜F3 ∩ ˜F2 = ∅, which is contradict with (b).

(2) If m2 = n2, then E2 = F2. Equality (3) implies that ˜F3 = ˜F1, which is
also contradict with (b).

(3) If m2 < n2, we consider the maximum of equality (3), we have

2 + α+ n1 + n2

N1 +N2
+ 1 = max{

n1

N1
+ 1,

n2

N2
+ 1}.

If 2+α+n1+n2

N1+N2

+1 = n1

N1

+1 ∈ ˜E1, then
2+α+n2

N2

= n1

N1

. Since 1+α+n1

N1

≥ n1

N1

=
2+α+n2

N2

> n2

N2

, we have 1+α+n1+n2

N1+N2

+ 1 /∈ ˜E2, which contradicts (a).

If 2+α+n1+n2

N1+N2

+ 1 = n2

N2

+ 1 ∈ ˜E2, by the symmetry of n1 and n2, we get
1+α+n1+n2

N1+N2

+ 1 /∈ ˜E1, which also contradicts (a). So we finish the proof. �

Lemma 3.2. Let α ≥ −1, n,m ∈ Ω and n 6= m. Suppose n1 + n2 = m1 +m2,

then n ∼ m if and only if n ∈ ∆1 ∪ ˜∆1, where ∆1 = {(kq1, kq2 − 1) : 1 ≤ k ≤

δ, k ∈ N} and ˜∆1 = {(kq1 − 1, kq2) : 1 ≤ k ≤ δ, k ∈ N}.

Proof. The sufficiency is easy to check, we only show the proof of necessity. If
n1 + n2 = m1 +m2, then E3 = F3 and E1 ⊔ E2 = F1 ⊔ F2. Since n 6= m, we
have n1 6= m1. Without lose of generality, let n1 > m1, then n2 < m2. Eq.
E1 ⊔ E2 = F1 ⊔ F2 shows that

max{
n1

N1
,
n2

N2
} = max{

m1

N1
,
m2

N2
};

min{
n1 + 1

N1
,
n2 + 1

N2
} = min{

m1 + 1

N1
,
m2 + 1

N2
}.

Thus
{

n1

N1

= m2

N2

m1+1
N1

= n2+1
N2

.

It follows that m1−n1+1
N1

= n2−m2+1
N2

. Since m1 − n1 = n2 −m2 and N1 6= N2,

we get m1 − n1 + 1 = n2 − m2 + 1 = 0. Further, n1

N1

= m2

N2

implies that

m2 = n2 + 1 = q2
q1
n1. Thus there exists k such that n1 = kq1. Then m2 = kq2,
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n2 = kq2 − 1 and m1 = kq1 − 1. To satisfy n,m ∈ Ω, there is a confine that

k ∈ Z+ and 1 ≤ k ≤ δ. That is, m = n+ (−1, 1) ∈ ˜∆1 for n ∈ ∆1. �

If n1+n2 = m1+m2±1, there are three cases: (i) n1 = m1; (ii) n2 = m2; (iii)
n1 6= m1 and n2 6= m2. We give the characterization of n and m, respectively.

Lemma 3.3. Let α ≥ −1, n ∈ Ω. There is m ∈ Ω such that m ∼ n and

m 6= n. Then the following statements hold.

(i) If n1 = m1, then α ∈ Q and there is an integer 0 ≤ i0 < q1 such that
2+α+i0

q1
q2 ∈ Z+. In this case, (n,m) ∈ ∆2∪ ˜∆2,where ∆2 = {(kq1−2−

α, kq2) : k = 2+α+i0
q1

+i, 0 ≤ i ≤ δ−1} and ˜∆2 = {(kq1−2−α, kq2−1) :

k = 2+α+i0
q1

+ i, 0 ≤ i ≤ δ − 1}.

(ii) If n2 = m2, then α ∈ Q and there is integer 0 ≤ j0 < q2 such

that 2+α+j0
q2

q1 ∈ Z+. In this case, (n,m) ∈ ∆3 ∪ ˜∆3, where ∆3 =

{(kq1, kq2 − 2 − α) : k = 2+α+j0
q2

+ j, 0 ≤ j ≤ δ − 1} and ˜∆3 =

{(kq1 − 1, kq2 − 2− α) : k = 2+α+j0
q2

+ j, 0 ≤ j ≤ δ − 1}.

(iii) If n1 6= m1 and n2 6= m2, then α ∈ N and q1, q2 ∈ {1 + α, 1}. Further-

more,

(a) if q1 = 1, then q2 = 1 + α and (n,m) ∈ ∆4 ∪ ˜∆4, where ∆4 =

{(kq1, kq2 − 2 − α) : 2 ≤ k ≤ δ + 1, k ∈ N} and ˜∆4 = {(kq1 −
2, kq2 − 1− α) : 2 ≤ k ≤ δ + 1, k ∈ N}.

(b) if q2 = 1, then q1 = 1 + α and (n,m) ∈ ∆5 ∪ ˜∆5, where ∆5 =

{(kq1 − 2 − α, kq2) : 2 ≤ k ≤ δ + 1, k ∈ N} and ˜∆5 = {(kq1 − 1−
α, kq2 − 2) : 2 ≤ k ≤ δ + 1, k ∈ N}.

Proof. By Lemma 3.1, we assume n1 + n2 = m1 +m2 + 1, or else exchanging
(n1, n2) and (m1,m2). Therefore,

(4) ˜E1 ⊔ ˜E2 ⊔ {
2 + α+ n1 + n2

N1 +N2
} = ˜F1 ⊔ ˜F2 ⊔ {

2 + α+ n1 + n2

N1 +N2
+ 1}.

(i) By n1 = m1, we have n2 = m2 + 1. Eq. (2) implies that

2 + α+ n1 + n2

N1 +N2
=

n2

N2
,

that is 2+α+n1

N1

= n2

N2

. So there exists k ≥ 0 such that n2 = kq2, n1 = kq1−2−α.

It follows that n = (kq1−2−α, kq2) andm = n+(0,−1) = (kq1−2−α, kq2−1) ∈
ℑn. By n,m ∈ Ω, we have kq2 = 2+α+h

q1
q2 ∈ N for some nonnegative integer

h = i0 + iq1(0 ≤ i0 < q1, 0 ≤ i ≤ δ − 1). That is, k = 2+α+h
q1

= 2+α+i0
q1

+ i.

Since 0 ≤ i0 < q1, the choose of i0 is unique. So we finish the proof of necessity.
The sufficiency is easy to check. So (i) holds.

(ii) By the symmetry of n1 and n2, we have the statement (ii) holds.
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(iii) First, if n1 > m1, n2 6= m2 implies that n2 + 1 ≤ m2 and n1 ≥ m1 + 2.
Considering the maximum and minimum of Eq. (4), it is easy to see

(5)

1 +
n1

N1
= max{1 +

2 + α+ n1 + n2

N1 +N2
, 1 +

m2

N2
},

m1 + 1

N1
= min{

2 + α+ n1 + n2

N1 +N2
,
n2 + 1

N2
}.

We claim that

(6) 1 +
n1

N1
=

2 + α+ n1 + n2

N1 +N2
+ 1.

Or else, assume n1

N1

+ 1 = m2

N2

+ 1 > 2+α+n1+n2

N1+N2

+ 1. Clearly

2 + α+m2

N2
>

m2

N2
=

n1

N1
≥

m1 + 1

N1
.

Therefore,
m1 + 1

N1
<

3 + α+m1 +m2

N1 +N2
=

2 + α+ n1 + n2

N1 +N2
.

So (5) implies that

(7)
n2 + 1

N2
=

m1 + 1

N1
.

Since n1 + n2 = m1 + m2 + 1, we get m2−n2−1
N2

= n1−m1−1
N1

= m2−n2

N1

. Let

m2 − n2 = pq1, then m2 − n2 − 1 = pq2. That is, p ∈ N and 1 = p(q1 − q2).
Therefore, p = 1, q1 = q2 + 1, forcing N1 ≥ 2 and N1 > N2. Then 1 + n1−1

N1

>

1 + m2−1
N2

. The Eq. (4) shows that

(8) 1 +
n1 − 1

N1
= 1 +

2 + α+ n1 + n2

N1 +N2
.

If 2+α+n1+n2

N1+N2

∈ ˜F2, then Card ˜F2 =Card ˜E2 ≥ 2. By N1 > N2, we have
n2+2
N2

> m1+2
N1

. The equalities (7) and (8) show that m1+2
N1

/∈ ˜E1 ⊔ ˜E2 ⊔

{ 2+α+n1+n2

N1+N2

}, which is a contradiction.

If 2+α+n1+n2

N1+N2

∈ ˜F1, then

(9)
2 + α+ n1 + n2

N1 +N2
=

m1 + 2

N1
.

In fact, equality (8) implies that

(10) {z ∈ ˜F1 : z <
2 + α+ n1 + n2

N1 +N2
} = {z ∈ ˜E2 : z <

2 + α+ n1 + n2

N1 +N2
}.

Since N1 6= N2, we have Card{z ∈ ˜F1 : z < 2+α+n1+n2

N1+N2

} = 1. So (9) holds.

Combining (8) and (9), we get n1 = m1+3. It means that q1 = m2−n2 = 2
and q2 = 1. By (7) and (9), we have 2+α

N2

= 1
N1

, i.e., 2(2 + α) = 1, which is
contradict with α > −1. So we get the claim.
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By (6), there is

(11)
2 + α+ n2

N2
=

n1

N1
.

It follows that

(12)

{

n1 = kq1

n2 = kq2 − 2− α

for some k ≥ 2 + α. Therefore,

(13)
2 + α+ n1 + n2

N1 +N2
=

k

δ
>

kq2 − (1 + α)

δq2
=

n2 + 1

N2
.

Then Eq. (5) deduces that

(14)
m1 + 1

N1
=

n2 + 1

N2
, i.e., m1 + 1 = kq1 −

(1 + α)q1
q2

.

If N1 = 1, then N2 > 1. Since m2 − n2 > 1, we have n2+2
N2

∈ ˜E2, but
n2+2
N2

/∈ ˜F1 ⊔ ˜F2 ⊔ ˜E3, which is a contradiction.
If N1 > 1, then

max{1 +
n1 − 1

N1
,
2 + α+ n1 + n2

N1 +N2
} = 1 +

m2

N2
.

By Eq. (11), we have 2+α+n1+n2

N1+N2

< n1−1
N1

+ 1. Therefore,

n1 − 1

N1
=

m2

N2
.

It follows that m2 = kq2 −
q2
q1

∈ Z+. Combining n1 + n2 = m1 +m2 + 1 with

(12), (14) and N1 6= N2, we conclude that q2
q1

= 1 + α. Therefore, q2 = 1 + α,

q1 = 1, and α ∈ N. In this case, (m1,m2) = (n1 − 2, n2 + 1) and (n,m) ∈ ∆4.
Next, if n1 < m1, we have n2 > m2 + 1 and n1 + 1 < m1. Since n1 and

n2 are symmetric; m1 and m2 are symmetric, it is easy to check that q2 = 1,
q1 = 1 + α, and (n,m) ∈ ∆5. So (iii) holds. �

Remark 3.4. In above lemma, the number k in condition (i) and (ii) is not
always an integer. If n and m satisfy one of the conditions (i), (ii) and (iii),
then n ∼ m and n 6= m.

Notice that ∆1 6= ∅ and does not change with α. However, {∆i}(i = 2, 3, 4, 5)
heavily depend on the α, and some of them may be empty. By careful com-

putation, we know that each two of {∆i, ˜∆i : i = 1, . . . , 5} are either equal or
disjoint. Therefore, we assert that the Card of ℑn heavily depend on the α.

For the case that α = −1, it is easy to see that ∆4 = ∆5 = ∅, ˜∆1 = ∆2 and
˜∆2 = ˜∆3. So we have the following result.
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Lemma 3.5. If α = −1, then ℑn 6= {n} if and only if

ℑn = {(kq1, kq2 − 1), (kq1 − 1, kq2), (kq1 − 1, kq2 − 1)}

for some 1 ≤ k ≤ GCD(N1, N2).

For the case that α > −1, we have the following statements hold.
1◦ If α ∈ (−1,+∞)\Q, then ∆i = ∅ for i = 2, 3, 4, 5. Therefore, Cardℑn 6= 1

if and only if Cardℑn = 2 for n ∈ ∆1 ∪ ˜∆1.
2◦ If α ∈ (Q ∩ (−1,+∞)) \ Z+, then ∆4 = ∆5 = ∅. Therefore, Cardℑn 6= 1

if and only if Cardℑn = 2, and n ∈ ∆1 ∪ ˜∆1 ∪∆2 ∪ ˜∆2 ∪∆3 ∪ ˜∆3. Moreover,
∆2 and ∆3 are not non-empty sets at the same time. In fact, let α = q

p
where

p, q ∈ Z, p > 1, q > −p and GCD(p, |q|) = 1. By 2+α+i0
q1

q2 ∈ Z+, it is easy

to see (2 + α + i0)q2 = (2+i0)p+q

p
q2 ∈ Z+. Since GCD(p, |q|) = 1, we have

GCD((2 + i0)p + q, p) = 1. So p | q2. Similar, 2+α+j0
q2

q1 ∈ Z+ implies that

p | q1. Thus we get p = 1, which is a contradiction.
3◦ If α ∈ Z+, then ∆2 and ∆3 are not empty.

(1) If N2 6= (1 + α)N1 and N1 6= (1 + α)N2, then δ4 = δ5 = ∅. Therefore,

Cardℑn 6= 1 if and only if Cardℑn = 2, for n ∈ ∆1 ∪ ˜∆1 ∪∆2 ∪ ˜∆2 ∪

∆3 ∪ ˜∆3.
(2) If N2 = (1 + α)N1, α 6= 0, then ∆5 = ∅, ∆1 = ˜∆3, ˜∆1 = ˜∆4 and

∆3 = ∆4. Cardℑn 6= 1 if and only if Cardℑn = 2 or Cardℑn = 3.

Moreover, Cardℑn = 2 if and only if n ∈ ∆2 ∪ ˜∆2; Cardℑn = 3 if and

only if n ∈ ∆1 ∪ ˜∆1 ∪∆3. In this case, n ∼ n+ (−1, 1) ∼ n+ (1, 0) for
n ∈ ∆1.

(3) If N1 = (1 + α)N2, α 6= 0, then ∆4 = ∅, ˜∆1 = ˜∆2, ∆2 = ∆5 and
˜∆5 = ∆1. Cardℑn 6= 1 if and only if Cardℑn = 2 or Cardℑn = 3.

Moreover, Cardℑn = 2 if and only if n ∈ ∆3 ∪ ˜∆3; Cardℑn = 3 if and

only if n ∈ ∆1 ∪ ˜∆1 ∪∆2. In this case, n ∼ n+ (−1, 1) ∼ n+ (−1, 2)
for n ∈ ∆1.

Combining above analysis and the results in section two, we have the fol-
lowing results. Recall that δ = GCD(N1, N2).

Theorem 3.6. On the Bergman space A2
α(B2) with α ∈ (−1,+∞)\Q, V∗(zN)

is ∗-isomorphic to
δ

⊕

i=1

M2(C)
⊕

+∞
⊕

i=1

C,

where N = (N1, N2) and N1 6= N2.

Theorem 3.7. On the Bergman space A2
α(B2) with α ∈ (Q∩ (−1,+∞)) \Z+,

V∗(zN) is ∗-isomorphic to

s
⊕

i=1

M2(C)
⊕

+∞
⊕

i=1

C,
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where s ∈ {δ, 2δ}, where N = (N1, N2) and N1 6= N2.

Example 3.8. Let α = 2
5 , N1 = 6, N2 = 9. Then ∆1 = {(2, 2), (4, 5), (6, 8)},

∆2 = ∆3 = ∆4 = ∆5 = ∅. So on the Bergman space A2
2

5

(B2), V
∗(z61z

9
2) is

∗-isomorphic to
3

⊕

i=1

M2(C)
⊕

+∞
⊕

i=1

C.

Example 3.9. Let α = 2
3 , N1 = 6, N2 = 9. It is easy to check that (1)∆1 =

{(2, 2), (4, 5), (6, 8)}; (2) ∆3 = ∆4 = ∆5 = ∅; (3) ∆2 = {(0, 4), (2, 7), (4, 10)}
with k = 1+ 1

3 , 2+
1
3 , 3+

1
3 , respectively. Then on the Bergman space A2

2

3

(B2),

V∗(z61z
9
2) is ∗-isomorphic to

6
⊕

i=1

M2(C)
⊕

+∞
⊕

i=1

C.

Theorem 3.10. Let N = (N1, N2) and N1 6= N2. On the Bergman space

A2
α(B2) with α ∈ Z+, the following statements hold:

(i) if N1 6= (1 + α)N2 and N2 6= (1 + α)N1, then V∗(zN ) is ∗-isomorphic

to
3δ
⊕

i=1

M2(C)
⊕

+∞
⊕

i=1

C;

(ii) if N1 = (1+α)N2 or N2 = (1+α)N1, then V∗(zN ) is ∗-isomorphic to

δ
⊕

i=1

M3(C)
⊕

δ
⊕

i=1

M2(C)
⊕

+∞
⊕

i=1

C.

Example 3.11. If α = 4, N1 = 6, N2 = 9, then ∆1 = {(2, 2), (4, 5), (6, 8)},
∆2 = {(0, 9), (2, 12), (4, 15)}, ∆3 = {(4, 0), (6, 3), (8, 6)}, ∆4 = ∆5 = ∅. On the
Bergman space A2

4(B2), V
∗(z61z

9
2) is ∗-isomorphic to

9
⊕

i=1

M2(C)
⊕

+∞
⊕

i=1

C.

Example 3.12. If α= 2, N1= 3, N2= 9, then ∆1= ˜∆3= {(1, 2), (2, 5), (3, 8)},
∆2 = {(0, 12), (1, 15), (2, 18)}, ∆3 = ∆4 = {(2, 2), (3, 5), (4, 8)} and ∆5 = ∅.
On the Bergman space A2

2(B2), V
∗(z61z

9
2) is ∗-isomorphic to

3
⊕

i=1

M3(C)
⊕

3
⊕

i=1

M2(C)
⊕

+∞
⊕

i=1

C.

Theorem 3.13. On the Hardy space H2(B2), V
∗(zN ) is ∗-isomorphic to

δ
⊕

i=1

M3(C)
⊕

+∞
⊕

i=1

C,
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where N = (N1, N2) and N1 6= N2.
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