In this paper, we deal with the following system of nonlinear singular boundary value problems(BVPs) on time scale $\mathbb{T}$$$\{{{{{{x^{\bigtriangleup\bigtriangleup}(t)+f(t,\;y(t))=0,\;t{\in}(a,\;b)_{\mathbb{T}},}\atop{y^{\bigtriangleup\bigtriangleup}(t)+g(t,\;x(t))=0,\;t{\in}(a,\;b)_{\mathbb{T}},}}\atop{\alpha_1x(a)-\beta_1x^{\bigtriangleup}(a)=\gamma_1x(\sigma(b))+\delta_1x^{\bigtriangleup}(\sigma(b))=0,}}\atop{\alpha_2y(a)-\beta_2y^{\bigtriangleup}(a)=\gamma_2y(\sigma(b))+\delta_2y^{\bigtriangleup}(\sigma(b))=0,}}$$ where $\alpha_i$, $\beta_i$, $\gamma_i\;{\geq}\;0$ and $\rho_i=\alpha_i\gamma_i(\sigma(b)-a)+\alpha_i\delta_i+\gamma_i\beta_i$ > 0(i = 1, 2), f(t, y) may be singular at t = a, y = 0, and g(t, x) may be singular at t = a. The arguments are based upon a fixed-point theorem for mappings that are decreasing with respect to a cone. We also obtain the analogous existence results for the related nonlinear systems $x^{\bigtriangledown\bigtriangledown}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangledown\bigtriangledown}(t)$ + g(t, x(t)) = 0, $x^{\bigtriangleup\bigtriangledown}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangleup\bigtriangledown}(t)$ + g(t, x(t)) = 0, and $x^{\bigtriangledown\bigtriangleup}(t)$ + f(t, y(t)) = 0, $y^{\bigtriangledown\bigtriangleup}(t)$ + g(t, x(t)) = 0 satisfying similar boundary conditions.
The application of pontryagin's Maximum Principle to the optimal control eventually leads to the problem of solving the two point boundary value problem. Most of problems have been related to their own special factors, therfore it is very hard to recommend the best method of deriving their optimal solution among various methods, such as iterative Runge Kutta, analog computer, gradient method, finite difference and successive approximation by piece-wise linearization. The gradient method has been applied to the optimal control of two point boundary value problem in the power systems. The most important thing is to set up some objective function of which the initial value is the function of terminal point. The next procedure is to find out any global minimum value from the objective function which is approaching the zero by means of gradient projection. The algorithm required for this approach in the relevant differential equations by use of the Runge Kutta Method for the computation has been established. The usefulness of this approach is also verified by solving some examples in the paper.
International Journal of Computer Science & Network Security
/
v.21
no.12
/
pp.223-227
/
2021
A treatment based on the algebraic operations on fuzzy numbers is used to replace the fuzzy problem into an equivalent crisp one. The finite difference technique is used to replace the continuous boundary value problem (BVP) of arbitrary order 1<α≤2, with fuzzy boundary parameters into an equivalent crisp (algebraic or differential) system. Three numerical examples with different behaviors are considered to illustrate the treatment of the singular perturbed case with different fractional orders of the BVP (α=1.8, α=1.9) as well as the classical second order (α=2). The calculated fuzzy solutions are compared with the crisp solutions of the singular perturbed BVP using triangular membership function (r-cut representation in parametric form) for different values of the singular perturbed parameter (ε=0.8, ε=0.9, ε=1.0). Results are illustrated graphically for the different values of the included parameters.
Variational method has played an important role in solving problems of uniqueness and existence of the nonlinear works as well as analysis. It will also be extremely useful for researchers in all branches of natural sciences and engineers working with non-linear equations economy, optimization, game theory and medicine. Recently, the existence of infinitely many weak solutions for some non-local problems of Kirchhoff type with Dirichlet boundary condition are studied [14]. Here, a suitable method is presented to treat the elliptic partial derivative equations, especially (p(x), q(x))-Laplacian-like systems. This kind of equations are used in the study of fluid flow, diffusive transport akin to diffusion, rheology, probability, electrical networks, etc. Here, the existence of infinitely many weak solutions for some boundary value problems involving the (p(x), q(x))-Laplacian-like operators is proved. The method is based on variational methods and critical point theory.
In recent years, the study of slice Dirac operators has attracted more and more attention in the literature. In this paper, Almansitype decompositions for null solutions to the iterated slice Dirac operator and the generalized slice Dirac operator are obtained without a star-like domain centered at the origin. As applications, we investigate Riquier type problems and Dirichlet type problems in the theory of slice monogenic functions.
As an alternative for solving the incompressible Navier-Stokes equations, we present a vorticity-based integro-differential formulation for vorticity, velocity and pressure variables. One of the most difficult problems encountered in the vorticity-based methods is the introduction of the proper value-value of vorticity or vorticity flux at the solid surface. A practical computational technique toward solving this problem is presented in connection with the coupling between the vorticity and the pressure boundary conditions. Numerical schemes based on an iterative procedure are employed to solve the governing equations with the boundary conditions for the three variables. A finite volume method is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition . The velocity field is obtained by using the Biot-Savart integral derived from the mathematical vector identity. Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well-established for potential flow analysis. The calculated results with the present mettled for two test problems are compared with data from the literature in order for its validation. The first test problem is one for the two-dimensional square cavity flow driven by shear on the top lid. Two cases are considered here: (i) one driven both by the specified non-uniform shear on the top lid and by the specified body forces acting through the cavity region, for which we find the exact solution, and (ii) one of the classical type (i.e., driven only by uniform shear). Secondly, the present mettled is applied to deal with the early development of the flow around an impulsively started circular cylinder.
In this paper we are concerned with optimal control problems whose costs am quadratic and whose states are governed by linear delay equations and general boundary conditions. The basic new idea of this paper is to Introduce a new class of linear operators in such a way that the state equation subject to a starting function can be viewed as an inhomogeneous boundary value problem in the new linear operator equation. In this way we avoid the usual semigroup theory treatment to the problem and use only linear operator theory.
In this paper we are concerned with optimal control problems whose costs are quadratic and whose states are governed by linear delay differential equations and general boundary conditions. The basic new idea of this paper is to introduce a new class of linear operators in such a way that the state equation subject to a starting function can be viewed as an inhomogeneous boundary value problem in the new linear operator equation. In this way we avoid the usual semigroup theory treatment to the problem and use only linear operator theory.
A boundary integral equation method in the shape design sensitivity analysis is developed for the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of the interface shape variation is then derived by taking derivative of the boundary integral identity. Adjoint problem is defined such that displacement and traction discontinuity is imposed at the interface. Analytic example for a compound cylinder is taken to show the validity of the derived sensitivity formula. In the numerical implementation, solutions at the interface for the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for the solution, more generalization should be made since it should handle the jump conditions at the interface. Accuracy of the sensitivity is evaluated numerically by the same compound cylinder problem. The endosseous implant-bone interface problem is considered next as a practical application, in which the stress value is of great importance for successful osseointegration at the interface. As a preliminary step, a simple model with tapered cylinder is considered in this paper. Numerical accuracy is shown to be excellent which promises that the method can be used as an efficient and reliable tool in the optimization procedure for the implant design. Though only the axisymmetric problem is considered here, the method can be applied to general elasticity problems having interface.
Transactions of the Korean Society of Mechanical Engineers
/
v.11
no.2
/
pp.234-242
/
1987
The solution of shape design problems based on variational analysis has been approached by using the domain adaptive method. The objective of the structural shape design is to minimize the weight within a bound on local stress measure, or to minimize the maximum local stress measure within a bound on the weight. A derived optimality condition in both design problems requires that the unit mutual energy has constant value along the design boundary. However, the condition for constant stress on the design boundary was used in computation since the computed mutual energy oscillates severely on the boundary. A two step iteration scheme using domain adaptation was presented as a computational method to slove the example designs of elastic structures. It was also shown that remeshing by grid adaptation was effective to reduce oscillatory behavior on the design boundary.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.