• 제목/요약/키워드: Boundary-Element Method

검색결과 2,123건 처리시간 0.029초

경계요소법에 있어서 수치적분에 관한 고찰 (Treatment of Numerical Integration for Boundary Element Method)

  • 박성완;곽창섭;구영덕
    • 한국정밀공학회지
    • /
    • 제13권2호
    • /
    • pp.185-193
    • /
    • 1996
  • Errors included in solutions obtained by the boundary element method are generally larger than those by the finite element method in the case that the number of discreted elements is small. One of the reasons is supposed to be attributed to the error which will be produced in the numerical integration of the singular functions in two dimensional elastic problem. Then, treatment of analytical integration to reduce computing time and to decrease errors of boundary element method are proposed.

  • PDF

경계요소법에 의한 파동장에 있어서 비선형파의 가상경계처리 (Open Boundary Treatment of Nonlinear Waves in the Shallow Water Region by Boundary Element Method)

  • 김남형;;최한규
    • 한국해안해양공학회지
    • /
    • 제3권3호
    • /
    • pp.176-183
    • /
    • 1991
  • 본 연구는 경계요소법을 이용하여 비선형 자유표면파을 해석한 것이며, 가상경계처리는 유체 연속성을 고려하여 mass-flux와 energy-flux를 사용하여 유한진폭파동의 해석수법을 제시했다. 유체의 비선형성 때문에 증분법을 적용했으며 경계요소법에 의해 얻어진 결과는 유한요소법의 결과와 실험치와 비교하여 보았으며 좋은 일치가 얻어 졌다. 따라서, 이 방법은 광범위한 파동문제 해석에 유효하게 이용될 수 있으리라 사료된다.

  • PDF

경계요소법(境界要素法)에 의한 2차원(次元) 응력해석(應力解析) (Two-dimensional Stress Analysis Using Boundary Element Method)

  • 장창두;이성훈
    • 대한조선학회지
    • /
    • 제23권4호
    • /
    • pp.11-18
    • /
    • 1986
  • The fundamental theory and application of boundary element method for two-dimensional problem are introduced in this paper. Based on this boundary element procedure, several numerical calculations such as circular cavity problem, a thin plate with hole under tension and a long thick-walled cylinder under internal pressure are performed. The numerical results show fairly good agreement with exact solutions or results of finite element method.

  • PDF

PFBEM을 이용한 자동차 실내외 다영역 공간의 소음해석 (Car Interior and Exterior Multi-domain Noise Analysis using Power Flow Boundary Element Method)

  • 김종도;홍석윤;이호원;권현웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.489-493
    • /
    • 2007
  • Mmulti-domain noise analysis method using Power Flow Boundary Element Method(PFBEM) has been developed successfully. Some applications are introduced. several examples. PFBEM is a numerical analysis method formulated by applying Boundary Element Method(BEM) to Power Flow Analysis(PFA). PFBEM is very powerful in predicting noise level in medium-to-high frequency ranges. However there are restrictions in analyzing the coupled structures and multi-media. In this paper, an analysis method for multi-domain acoustic problems in the diverse acoustic fields is suggested. And the developed method is applied to the car interior and exterior multi-domain noise analysis.

  • PDF

A boundary radial point interpolation method (BRPIM) for 2-D structural analyses

  • Gu, Y.T.;Liu, G.R.
    • Structural Engineering and Mechanics
    • /
    • 제15권5호
    • /
    • pp.535-550
    • /
    • 2003
  • In this paper, a boundary-type meshfree method, the boundary radial point interpolation method (BRPIM), is presented for solving boundary value problems of two-dimensional solid mechanics. In the BRPIM, the boundary of a problem domain is represented by a set of properly scattered nodes. A technique is proposed to construct shape functions using radial functions as basis functions. The shape functions so formulated are proven to possess both delta function property and partitions of unity property. Boundary conditions can be easily implemented as in the conventional Boundary Element Method (BEM). The Boundary Integral Equation (BIE) for 2-D elastostatics is discretized using the radial basis point interpolation. Some important parameters on the performance of the BRPIM are investigated thoroughly. Validity and efficiency of the present BRPIM are demonstrated through a number of numerical examples.

스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석 (Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method)

  • 이영구;홍석윤;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.

역문제에 의한 스파이얼 베벨기어의 해석 (Analysis of Spiral Bevel Gear by Inverse Problem)

  • 박성완
    • 한국공작기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.85-95
    • /
    • 2001
  • This study proposed a technique for inverse problem, linear approximation of contact position and loading in single and double meshing of spiral bevel gear , using 2-dimension model considered near the tooth by root stress. Determine root stress is carried out far the gear tooth by finite element method and boundary element method. Boundary element discretization near contact point is carefully performed to keep high computational accuracy. And from those estimated results, the comparing estimate value with boundary element method value was discussed.

  • PDF

원공(圓孔)에 접근(接近)하는 균열(龜裂)이 있는 판(板)이 경계요소해석(境界要素解析) (Boundary Element Analysis of Plate with Crack Approaching Circular Holes)

  • 양창현;김일곤
    • 대한토목학회논문집
    • /
    • 제7권1호
    • /
    • pp.103-110
    • /
    • 1987
  • 구조물(構造物)에 발생(發生)한 균열(龜裂)이 원공(圓孔)에 접근(接近)할 때 원공(圓孔)과 균열선단(龜裂先端)에서는 큰 응력집중현상(應力集中現象)이 생긴다. 이러한 구조물(構造物)의 응력집중(應力集中)에 대한 수치해석방법(數値解析方法)으로 지금까지 주로 유한요소법(有限要素法)이 사용(使用)되어 왔으나 본 연구(硏究)에서는 유한요소법(有限要素法)에 비(比)해 입력자료(入力資料)와 계산시간(計算時間)을 현저히 줄일 수 있는 경계요소법(境界要素法)(boundary element method)을 시도(試圖)하였다. 두개의 원공(圓孔)사이에 균열(龜裂)이 있는 평판(平板)을 모델로 채택하여 경계요소법(境界要素法)으로 구한 해(解)를 Newman에 의한 경계선점법(境界選點法)(boundary collocation method)의 해와(解) 비교(比較)하였고 원공(圓孔)과 균열선단(龜裂先端)에서 역학적(力學的) 거동(擧動을 구명(究明)하였다.

  • PDF

Prediction of crack trajectory by the boundary element method

  • Bush, M.B.
    • Structural Engineering and Mechanics
    • /
    • 제7권6호
    • /
    • pp.575-588
    • /
    • 1999
  • A boundary element method is applied to the analysis of crack trajectory in materials with complex microstructure, such as discontinuously reinforced composite materials, and systems subjected to complex loading, such as indentation. The path followed by the crack(s) has non-trivial geometry. A study of the stress intensity factors and fracture toughness of such systems must therefore be accompanied by an analysis of crack trajectory. The simulation is achieved using a dual boundary integral method in planar problems, and a single boundary integral method coupled with substructuring in axisymmetric problems. The direction of crack propagation is determined using the maximum mechanical energy release rate criterion. The method is demonstrated by application to (i) a composite material composed of components having the elastic properties of aluminium (matrix) and silicon carbide (reinforcement), and (ii) analysis of contact damage induced by the action of an indenter on brittle materials. The chief advantage of the method is the ease with which problems having complex geometry or loading (giving rise to complex crack trajectories) can be treated.

A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions

  • Eftekhari, Seyyed A.
    • Steel and Composite Structures
    • /
    • 제28권6호
    • /
    • pp.655-670
    • /
    • 2018
  • A coupled method, that combines the Ritz method and the finite element (FE) method, is proposed to solve the vibration problem of rectangular thin and thick plates with general boundary conditions. The eigenvalue partial differential equation(s) of the plate is (are) first reduced to a set of eigenvalue ordinary differential equations by the application of the Ritz method. The resulting eigenvalue differential equations are then reduced to an eigenvalue algebraic equation system using the finite element method. The natural boundary conditions of the plate problem including the free edge and free corner boundary conditions are also implemented in a simple and accurate manner. Various boundary conditions including simply supported, clamped and free boundary conditions are considered. Comparisons with existing numerical and analytical solutions show that the proposed mixed method can produce highly accurate results for the problems considered using a small number of Ritz terms and finite elements. The proposed mixed Ritz-FE formulation is also compared with the mixed FE-Ritz formulation which has been recently proposed by the present author and his co-author. It is found that the proposed mixed Ritz-FE formulation is more efficient than the mixed FE-Ritz formulation for free vibration analysis of rectangular plates with Levy-type boundary conditions.