• Title/Summary/Keyword: Boundary value technique

Search Result 156, Processing Time 0.03 seconds

Numerical Study on Flow Over Oscillating Circular Cylinder Using Curved Moving Boundary Treatment (곡선경계처리법을 이용한 주기적으로 진동하는 실린더주위의 유동해석)

  • Kim, Hyung-Min;Jhon, Myung-S.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.11
    • /
    • pp.895-903
    • /
    • 2007
  • CMBT(Curved Moving Boundary Treatment) is a newly developed scheme for the treatment of a no slip condition on the curved solid wall of moving obstacle in a flow field. In our research CMBT was used to perform LBM simulation of a flow over a moving circular cylinder to determine the flow feature and aerodynamics characteristic of the cylinder. To ascertain the applicability of CMBT on the complex shape of the obstacle, it was first simulated for the case of the flow over a fixed circular cylinder in a channel and the results were compared against the solution of Navier-Stokes equation with deforming mesh technique. The simulations were performed in a moderate range of reynolds number at each moving cylinder to identify the flow feature and aerodynamic characteristics of circular cylinder in a channel. The drag coefficients of the cylinder were calculated from the simulation results. We have numerically confirmed that the critical reynolds number for vortex shedding is ar Re=250 and the result is the same as the case of fixed cylinder. As the cylinder approaching to one wall, the 2nd vortex is developed by interacting with the wall boundary-layer vorticity. As the velocity ratio increase the third vortex are generated by interacting with the 2nd vortexes developed on the upper and lower wall boundary layer. The resultant $C_d$ decrease as reynolds number increasing and the Cd approached to a value when Re>1000.

Depth Image Upsampling Algorithm Using Selective Weight (선택적 가중치를 이용한 깊이 영상 업샘플링 알고리즘)

  • Shin, Soo-Yeon;Kim, Dong-Myung;Suh, Jae-Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1371-1378
    • /
    • 2017
  • In this paper, we present an upsampling technique for depth map image using selective bilateral weights and a color weight using laplacian function. These techniques prevent color texture copy problem, which problem appears in existing upsamplers uses bilateral weight. First, we construct a high-resolution image using the bicubic interpolation technique. Next, we detect a color texture region using pixel value differences of depth and color image. If an interpolated pixel belongs to the color texture edge region, we calculate weighting values of spatial and depth in $3{\times}3$ neighboring pixels and compute the cost value to determine the boundary pixel value. Otherwise we use color weight instead of depth weight. Finally, the pixel value having minimum cost is determined as the pixel value of the high-resolution depth image. Simulation results show that the proposed algorithm achieves good performance in terns of PSNR comparison and subjective visual quality.

Measurements of Thermal Diffusivity of Heavy Rolled Low Carbon Steel Plate With Laser Flash Technique (레이저 섬광법에 의한 압연된 저탄소강 판재의 열확산계수 측정)

  • 배신철;임동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.157-171
    • /
    • 1990
  • The heat transfer problem associated with pulse technique for measuring thermal diffusivity was solved by means of Green function. The obtained general solution was discussed so as to apply for all possible cases; kinds of boundary condition and heat source, irradiation positions of heat pulse, radius of heat pulse, one-and two-dimensional heat flow, finite pulse time effects and radiation heat loss systems. Experimentally, the laser flash lamp was used as heat source for measuring thermal diffusivity of low carbon, aluminium chilled steel plate, which was heavily rolled in order to measure the variation of thermal diffusivity in the temperature range from room temperature through 500.deg. C. The derived results are (1) materials produced from same furnace showed a somewhat different thermal diffusivity values. (2) the thermal diffusivity value of rolled material was smaller than unrolled material and the difference decreased as increasing temperature. (3) the thermal diffusivity value of an annealed and temper rolled material was larger than the value of a cold rolled material, even thought smaller than unrolled material. (4) In case of heavy rolled material, there was no consistent relationships between the thermal diffusivity and the reduction in thickness.

Numerical Analysis of Tapered Circular Arch with Fixed Ends (양단고정 변단면 도호아-치의 수치해석에 관한 연구)

  • 박문호;이병구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.19 no.3
    • /
    • pp.4462-4471
    • /
    • 1977
  • The governing differential equations for the tapered circular arch with fixed ends have been derived, and a numerical procedure for the solution of these equations have been developed. The governing differential equations were solved numerically by an initial value integration procedure and Shooting Methods for boundary value problems. The Rungekutta fourth order integration technique was used. The methods was programmed for a Cyber 73-18 computer System, and all esults were obtained on this computer. A detailed study has been made for a fixed arch with an angle of opening equal to 0.7 radian, and the results are presented in detail in tables and curves. It is hoped that the results presented herein is applied to the deformations of gives point from the tri-axial direction of tapered circular arch with fixed ends, bending moment, and torsional moment, and that at the same time results to be used for archwise structures in steel structure.

  • PDF

Computer Simulation of the Computational Method in Fuel Optimal Control

  • Lee, B.J.
    • Nuclear Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.11-22
    • /
    • 1972
  • Determination of a two-point boundary value problem is the key of finding the control function u(t) with the application of the fundamental idea of Minimum principle. The late development shows the discovery of the initial costate vector for the solution of a two-point value problem. As a new technique of determining the optimal control function, Newton's Sequential method is examined about a number of engineering problems and found available.

  • PDF

Computational Method of Fuel Optimal Control in Regulator System

  • Lee, Bong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.79-85
    • /
    • 1969
  • Determination of a two-point boundary value problem is the key of finding the control function u(f) with the application of the fundamental idea of Minimum principle. The late development shows the discovery of the initial testate vector for the solution of a two-point value problem. As a new technique of determining the optimal control function, Newton's sequential method is examined in this paper.

  • PDF

Estimation of Velocity and Training Overhead Constraints for Energy Efficient Cooperative Technique in Wireless Sensor Networks (협력통신을 이용하는 무선 센서네트워크에서의 에너지 소비 감소를 위한 속도와 훈련심볼의 오버헤드 임계값 추정)

  • Islam, Mohanmmad Rakibul;Kim, Jin-Sang;Cho, Won-Kyung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.5B
    • /
    • pp.443-448
    • /
    • 2009
  • A boundary value of the velocity of data gathering node (DGN) and a critical value for training overhead beyond which the scheme will not be feasible for a Multiple Input Multiple Output (MIMO) based cooperative communication for energy-limited wireless sensor networks is proposed in this paper. The performance in terms of energy efficiency and delay for a combination of two transmitting and two receiving antennas is analyzed. The results show that a set of critical value of velocity and training overhead pair is present for the long haul communication from the sensors to the data gathering node. Finally a relation between training overhead and velocity is simulated.

An Efficient Edge Detection Technique for Separating Regions in an Image (영상내에서 영역 구분을 위한 효율적인 경계검출 기법)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.359-360
    • /
    • 2021
  • The pixel-based processing of an image refers to a process of converting a value of one pixel only depending on the value of the current pixel, regardless of the value of another pixel. Pixel-based processing is used as the most basic operation in many fields such as image conversion, image enhancement, and image synthesis. There are processing methods such as arithmetic operation, histogram smoothing, and contrast stretching. In this paper, in order to clearly distinguish the tidal flat region from the tidal flat image of the west coast taken with a drone, we seek a method to find an efficient outline using pixel-based processing in the boundary detection part of the pre-processing process.

  • PDF

Determination of In-focus Criteria In Image Processing Method for Particle Size Measurement (입경측정을 위한 영상처리기법에서 입자 초점면 존재 판단 기준의 설정)

  • Koh, Kwang Uoong;Kim, Joo Youn;Lee, Sang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.398-407
    • /
    • 1999
  • In the present image processing technique, the concept of the gradient indicator(GI) has been introduced to find out the depth-of-field in sizing large particles ranging from $30{\mu}m$ to $30{\mu}m$ where using of the concept of the normalized contrast value(VC) is not appropriate. The gradient indicator is defined as the ratio of the local value to the maximum possible value of the gray-level gradient in an image frame. The gradient indicator decreases with the increases of the particle size and the distance from the exact focal plane. A particle is considered to be in focus when the value of the gradient indicator at its image boundary stays above a critical value. This critical gradient indicator($GI_{critical}$) is defined as the maximum gradient indicator($GI_{max}$) subtracted by a constant ${\Delta}GI$ which is to account for the particle-size effect. In the present ca.so, the value of ${\Delta}GI$ was set to 0.28 to keep the standard deviation of the measured particles mostly within 0.1. It was also confirmed that, to find the depth-of-field for small particles(${\leq}30{\mu}m$) with the same measurement accuracy, tho concept of the critical normalized contrast($VC_{critical}$) is applicable with 85% of the maximum normalized contrast value($VC_{max}$). Finally, the depth-of-field was checked for the size range between $10{\mu}m$ and $300{\mu}m$ when the both in-focus criteria ($GI_{critical}$ and $VC_{critical}$) were adopted. The change of the depth-of-field with the particle size shows good linearity in both the VC-applicable and the GI-applicable ranges with a reasonable accuracy.

Error Concealment Using Gradient Vectors in H.264 Decoder (H.264 디코더에서 기울기 벡터를 이용한 에러복원 방법)

  • Jeon Sung-Hoon;Yoo Jae-Myeong;Lee Guee-Sang
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.197-204
    • /
    • 2006
  • Recent advances in information technology have resulted in rapid growth in the mobile communication. With this explosive growth, reliable transmission and error concealment technique become increasingly important to offer high quality multimedia services. In this paper, we propose an improved BMA(Boundary Matching Algorithm) method using gradient vectors to conceal channel errors in inter-frames of H.264 video images. General BMA method computes the sum of pixel differences of adjacent pixels of the candidate block and its neighbouring blocks, assuming that adjacent pixels have almost the same value. In real images, however, there exist some gradients, which means that the pixel values are increasing or decreasing in a specific direction. In this paper, we develop a precise estimation method of errors in candidates blocks using gradient information and try to recover lost blocks with this technique. Experimental results show the improvement of picture quality about $1{\sim}3dB$ compared to existing methods.