• Title/Summary/Keyword: Boundary integral element methods

Search Result 38, Processing Time 0.022 seconds

Acoustic Radiation from Radial Vibration Modes of a Thick Annular Disk (후판 환형 디스크 래디얼 모드에 의한 음향방사에 관한 연구)

  • Lee, Hyeongill
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.412-420
    • /
    • 2005
  • This article proposes analytical solutions for sound radiation from radial vibration modes of a thick annular disk. Structural eigensolutions are calculated using the transfer matrix method. The far-field sound pressure distribution is obtained using two alternate methods. In the first method, pressure is calculated using the Rayleigh integral technique. The second method treats sound radiating radial surfaces as cylindrical radiators of finite length. The Sinc function approach is employed for calculations. Acoustic powers and radiation efficiencies of radial modes are also determined from the far-field sound pressure calculations. Analytical predictions match well with measured data as well as computational results from a finite element code in terms of structural eigensolutions and from a boundary element code in terms of sound pressure, directivity etc.

An Analysis of the Hybrid Finite Element Method for Scattering and Radiation by Microstrip Patch Antennas and Arrays Residing in a Cavity in a Ground Plane (접지평면상의 공간에 위치한 마이크로스트립 페치 단일 안테나와 배열 안테나에 의한 산란과 복 사에 관한 혼합유한요소법 해석)

  • 안중수;박동희;권희훈
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.12
    • /
    • pp.2468-2478
    • /
    • 1994
  • A hybrid finite element method is presented for a characterization of scattering an radiation properties of microstrip patch and arrays residing in a cavity recessed in a ground plane. The technique combines the finite element and boundary integral methods to formulate a system for the solution of fields at the aperture and the scattering field and radar cross sections at free space. By virture of the finite element method, the proposed technique is applicable to patch antennas and arrays residing on or embeded in a layered dielectric loss/lossless substrate and is also capable of treating various feed configuration. Several numerical results are presented demonstrating the validity, efficiency and capability of the technique.

  • PDF

Large eddy simulation of a square cylinder flow: Modelling of inflow turbulence

  • Tutar, M.;Celik, I.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.511-532
    • /
    • 2007
  • The present study aims to generate turbulent inflow data to more accurately represent the turbulent flow around a square cylinder when the inflow turbulence level is significant. The modified random flow generation (RFG) technique in conjunction with a previously developed LES code is successfully adopted into a finite element based fluid flow solver to generate the required inflow turbulence boundary conditions for the three-dimensional (3-D) LES computations of transitional turbulent flow around a square cylinder at Reynolds number of 22,000. The near wall region is modelled without using wall approximate conditions and a wall damping coefficient is introduced into the calculation of sub-grid length scale in the boundary layer of the cylinder wall. The numerical results obtained from simulations are compared with each other and with the experimental data for different inflow turbulence boundary conditions in order to discuss the issues such as the synthetic inflow turbulence effects on the 3-D transitional flow behaviour in the near wake and the free shear layer, the basic mechanism by which stream turbulence interacts with the mean flow over the cylinder body and the prediction of integral flow parameters. The comparison among the LES results with and without inflow turbulence and the experimental data emphasizes that the turbulent inflow data generated by the present RFG technique for the LES computation can be a viable approach in accurately predicting the effects of inflow turbulence on the near wake turbulent flow characteristics around a bluff body.

Predicted Air Flow Around Objects Using the Discrete Vortex Method

  • Kim, Tae-Hyeung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.E
    • /
    • pp.347-357
    • /
    • 1993
  • The Lagrangian grid-free numerical method, the discrete vortex method, was applied to solve the Navier-Stokes euqations. This method avoids the introduction of numerical viscosity swamping the real physical viscosity at high Reynolds number, unlike Eulerian method, e.g. finite difference and element methods. The boundary integral equation method for the potential flow solution was included to make the discrete vortex method more feasible for complex geometries. The fast adaptive multipole expansion method was incorporated to reduce the computational time from $O(N^2)$ to O(N) for the computations of vortex-vortex interactions. The test problems were air flow around one circular cylinder and two circular cylinders in tandem with various gaps. The numerical results were in excellent gareement with the experimental and other computational results. The applicabilty of the method was discussed with the indoor and the outdoor air pollution problems, especially the contaminant transport in the recirculation regions.

  • PDF

Dynamic Motions of Model Fish Cage Systems under the Conditions of Waves and Current (파랑 및 흐름중 모형 가두리 시설의 운동 특성)

  • KIM Tae-Ho;KIM Jae-O;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.1
    • /
    • pp.43-50
    • /
    • 2001
  • In order to analyze the dynamic motions of fish cage systems made of a frame and a netting under the conditions of waves and current, the hydraulic model experiment at towing tank and the numerical computation using boundary integral element method based on linear potential theory were carried out on a square and a circular type of fish cage, The computed and measured results for the dynamic motions of model fish cage systems showed that the heave and pitch motions were almost unaffected by the inclusion of nets, while the surge motions were very reduced by drag force acting on them. In addition, irregular wave-induced motions of fish cages included non-negligible 2nd order harmonic components at high frequency nearly twice the wave frequency. The reason why these motions were considered was due to resonance or structural components of frames being overflown and out of water during a wave cycle. It was found that circular type was more desirable structure in the open sea than square one only in the respect of dynamic motions due to waves and current. Further verifications were needed considering hydrodynamic forces, fatigue life, and structure analysis based on long term stochastic waves including frequency and time domain for the purpose of analyzing and designing fish cage systems.

  • PDF

Transient coupled thermoelastic analysis by finite element method (유한요소법에 의한 과도연성 열탄성 해석)

  • 이태원;심우진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1408-1416
    • /
    • 1990
  • A powerful and efficient method for finding approximate solutions to initial-boundary-value problems in the transient coupled thermoelasticity is formulated in time domain using the finite element technique with time-marching strategy. The final system equations can be derived by the Guritin's variational principle using the definition of convolution integral. But, the finite element formulation for the equations of motion is modified by differentiating in time. Numerical results to some test problems are compared with analytical and other sophisticated approximate solutions. Stable responces are observed in all the given examples irrespective of incremental time steps and mesh shapes. In addition, it is shown that good numerical results are obtained even in coarser mesh or larger time step comparing to other numerical methods.

Hydro-structural issues in the design of ultra large container ships

  • Malenica, Sime;Derbanne, Quentin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.983-999
    • /
    • 2014
  • The structural design of the ships includes two main issues which should be checked carefully, namely the extreme structural response (yielding & buckling) and the fatigue structural response. Even if the corresponding failure modes are fundamentally different, the overall methodologies for their evaluation have many common points. Both issues require application of two main steps: deterministic calculations of hydro-structure interactions for given operating conditions on one side and the statistical post-processing in order to take into account the lifetime operational profile, on the other side. In the case of ultra large ships such as the container ships and in addition to the classical quasi-static type of structural responses the hydroelastic structural response becomes important. This is due to several reasons among which the following are the most important: the increase of the flexibility due to their large dimensions (Lpp close to 400 m) which leads to the lower structural natural frequencies, very large operational speed (> 20 knots) and large bow flare (increased slamming loads). The correct modeling of the hydroelastic ship structural response, and its inclusion into the overall design procedure, is significantly more complex than the evaluation of the quasi static structural response. The present paper gives an overview of the different tools and methods which are used in nowadays practice.

An estimate of structure-borne sound by the excitation at an arbitrary point on the rectangular plate with fixed edges (주변고정 장방형 평판에 있어서 임의점 가진에 의한 고체전파음의 예측)

  • 김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.21-34
    • /
    • 1988
  • Machinery enclosures are widely adopted to reduce the noise emission in various fields of application. Emitted noise, which is due to the vibration of enclosure's outer surface, is composed of two kinds of sound with different path of propagation. One is the "structure-borne sound", while the other is "air-borne sound". In order to get a most efficient machinery enclouser a prudent consideration upon the above structure-borne and air-borne sound is required, as the guiding principle of contermeasure for each noise is quite different. The controlling of input vibration and its isolation are major subjects for the structure-borne sound, and the specifications of absorbing members and damping panels are the major related matters for the air-borne sound. Hence, it seems very efficient to separate the total sounds into two categories with a great accuracy when one think of further reduction of noise from the existing enclosure, although its separating methods have not been made clear for many years. Author proposes an application method of experimental modal analysis to extract the structure-borne sound from the measured total radiation sound, as the air-borne sound is deduced by the vectorial difference between the measured total radiation sound and the calculated structure-borne sound. In order to calculate the correct structure-borne sound by the excitation at an arbitrary point on the enclosure structure, it is important to decide 1) how to estimate the enclosure's surface vibration velocity and 2) how to compute the radiation sound which is considered as the effect of vibration modes of enclosure surface. The former can be solved with total frequency response function calculated by the application of experimental modal analysis. The latter is to be solved by the author's new approaches for radiation sound computation by means of the Rayleigh's integral equation and the boundary-element method applied complex surface vibration velocity. As a first step, structure-borne sound by the excitation at an arbitry point on the rectangular plate with fixed edges, has been calculated to verified the reliability of the developed computation methods. The results of calculation show good agreements with those of the actual measurements.actual measurements.

  • PDF