지하구조물은 물체력과 초기응력이 지배적인 하중조건이 되며, 무한 또는 반무한영역을 경계로 한다. 또한 굴착면 주위에는 응력집중에 의해 비선형 거동이 발생한다. 본 논문에서는 경계요소법으로 물체력과 초기응력을 해석하기 위하여 영역적분은 경계 적분화하였다. 물체력에 대한 영역적분은 Galerkin텐서와 발산정리를 사용한 방법과 극좌표를 이용한 직접적분 방법으로 경계적분화하였고, 초기응력에 대한 영역적분은 극좌표를 이용한 직접적분 방법을 응용하여 경계적분화하였다. 경계요소해석 결과는 유한요소해석 결과와 비교하여 검증하였고 검증된 경계요소 프로그램을 비선형 유한요소 프로그램과 조합하여 굴착면 주위에 발생하는 비선형 거동을 합리적으로 해석하도록 하였다. 경계요소법에서 고려하기 어려운 물체력과 초기응력에 대한 영역적분을 경계적분화하여 효율적으로 해석할 수 있었으며, 조합해석 방법으로 비선형 거동을 합리적으로 해석할 수 있었다. 본 연구의 결과는 지하구조물의 해석에 유용하게 사용될 수 있을 것으로 기대된다.
이 논문에서는 경계반력법을 이용한 비선형 지반-구조물 상호작용 해석을 위해 LS-DYNA나 MIDAS/Civil 등의 유한요소해석 프로그램과 연계하는 방법을 제시하였다. 경계반력법 적용시 유한요소프로그램에서 구조물과 지반은 선형 또는 비선형 유한요소를 이용하여 모델링하였다. 유한요소의 해석모델 외부의 무한영역으로 전달되는 탄성파를 최대한 흡수하기위해 유한요소 모델의 외측에 LS-DYNA의 경우에는 PML(Perfectly Matched Layer) 요소를, MIDAS/Civil의 경우에는 점성감쇠-스프링 요소를 적용하였다. 비선형 유한요소는 구조물영역에만 적용되는 것으로 가정하였다. 이 연구에서는 입사지진파에 의한 경계반력은 KIESSI-3D 프로그램을 이용하여 계산하였다. 선형 지반-구조물 상호작용 문제에 대해 일반적인 KIESSI-3D의 해석결과와 BRM해석결과를 비교하여 제시된 방법의 효율성을 제시하였다. 또한 수치적 비교를 통해 비선형 구조에 대해 보수적인 응답을 보이는 선형 SSI문제에 대하여 얻은 경계반력이 비선형 지반-구조물 상호작용해석에 효과적으로 적용 가능함을 알 수 있었다.
The geometrical nonlinear vibrations of the gold nanoscale rod are investigated for the first time by considering the internal modals interactions using different nonlinear beam theories. This phenomenon is usually one of the important features of nonlinear vibration systems. For a more detailed analysis, the von-Karman effects, preserving all the nonlinear terms in the strain-displacement relationships of gold nanoscale rods in three displacement directions, are considered to analyze the nonlinear axial vibrations of gold nanoscale rods. It uses highly accurate analytical-numerical solutions for the clamped-clamped and clamped-free boundary conditions of nanoscale gold rods. Also, with the help of Hamilton's principle, the governing equation and boundary conditions are derived based on Eringen's theory. The influence of nonlinear and nonlocal factors on axial vibrations was investigated separately for all three theories: Simple (ST), Rayleigh (RT) and Bishop (BT). Using different theories, the effects of inertia and shear on the internal resonances of gold nanorods were studied and compared in terms of twoto-one and three-to-one internal resonances. As the nonlocal parameter of the gold nanorod increases, the maximum nonlinear amplitude occurs. So, by adding nonlocal effects in a gold nanorod, the internal modal interactions resulting from the unique structure can be enhanced. It is worth noting that shear and inertial analysis have a significant effect on internal modal interactions in gold nanorods.
This study presents an approach for extracting boundaries of various buildings, which have concave boundaries, inner yards, non-right-angled corners, and nonlinear edges. The approach comprises four steps: building point segmentation, boundary tracing, boundary grouping, and regularization. In the second and third steps, conventional algorithms are improved for more accurate boundary extraction, and in the final step, a new algorithm is presented to extract nonlinear edges. The unique characteristics of airborne light detection and ranging (LIDAR) data are considered in some steps. The performance and practicality of the presented algorithm were evaluated for buildings of various shapes, and the average omission and commission error of building polygon areas were 0.038 and 0.033, respectively.
In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Forcing and damping terms were also included in the equations. The dimensionless equations were solved for six different set of boundary conditions. A perturbation method was applied to the equations of motions. The first terms of the perturbation series lead to the linear problem. Natural frequencies for the linear problem were calculated exactly for different boundary conditions. Second order non-linear terms of the perturbation series behave as corrections to the linear problem. Amplitude and phase modulation equations were obtained. Non-linear free and forced vibrations were investigated in detail. The effects of the position and magnitude of the step, as well as effects of different boundary conditions on the vibrations, were determined.
Venkateswarlu, M.;Reddy, G. Venkata Ramana;Lakshmi, D. Venkata
Journal of the Korean Society for Industrial and Applied Mathematics
/
제19권1호
/
pp.83-102
/
2015
The present paper analyses the radiation effects of mass transfer on steady nonlinear MHD boundary layer flow of a viscous incompressible fluid over a nonlinear porous stretching surface in a porous medium in presence of heat generation. The liquid metal is assumed to be gray, emitting, and absorbing but non-scattering medium. Governing nonlinear partial differential equations are transformed to nonlinear ordinary differential equations by utilizing suitable similarity transformation. The resulting nonlinear ordinary differential equations are solved numerically using Runge-Kutta fourth order method along with shooting technique. Comparison with previously published work is obtained and good agreement is found. The effects of various governing parameters on the liquid metal fluid dimensionless velocity, dimensionless temperature, dimensionless concentration, skin-friction coefficient, Nusselt number and Sherwood number are discussed with the aid of graphs.
The aim of this paper is to obtain nonlinear operators in suitable spaces whise fixed point coincide with the solutions of the nonlinear boundary value problems ($\Phi$($\upsilon$'))'=f(t, u, u'), l(u, u') = 0, where l(u, u')=0 denotes the Dirichlet, Neumann or periodic boundary conditions on [0, T], $\Phi$: N N is a suitable monotone monotone homemorphism and f:[0, T] N N is a Caratheodory function. The special case where $\Phi$(u) is the vector p-Laplacian $\mid$u$\mid$p-2u with p>1, is considered, and the applications deal with asymptotically positive homeogeneous nonlinearities and the Dirichlet problem for generalized Lienard systems.
This paper deals with blow-up phenomena for an initial boundary value problem of a quasilinear parabolic equation with time-dependent coefficient in a bounded star-shaped region under nonlinear boundary flux. Using the auxiliary function method and differential inequality technique, we establish some conditions on time-dependent coefficient and nonlinear functions for which the solution u(x, t) exists globally or blows up at some finite time $t^*$. Moreover, some upper and lower bounds for $t^*$ are derived in higher dimensional spaces. Some examples are presented to illustrate applications of our results.
In this paper, we initiate the study of boundary value problems involving Hilfer fractional derivatives. Several new existence and uniqueness results are obtained by using a variety of fixed point theorems. Examples illustrating our results are also presented.
In this paper, by using fixed point theorems in cones, the existence of positive solutions is considered for nonlinear m-point boundary value problem for the following second-order dynamic equations on time scales $$u^{{\Delta}{\nabla}}(t)+a(t)f(t,u(t))=0,\;t{\in}(0,T),\;{\beta}u(0)-{\gamma}u^{\Delta}(0)=0,\;u(T)={\sum_{i=1}^{m-2}}\;a_iu({\xi}_i),\;m{\geq}3$$, where $a(t){\in}C_{ld}((0,T),\;[0,+{\infty}))$, $f{\in}C([0,T]{\times}[0,+{\infty}),\;(-{\infty},+{\infty}))$, the nonlinear term f is allowed to change sign. We obtain several existence theorems of positive solutions for the above boundary value problems. In particular, our criteria generalize and improve some known results [15] and the obtained conditions are different from related literature [14]. As an application, an example to demonstrate our results is given.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.