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This study presents an approach for extracting 
boundaries of various buildings, which have concave 
boundaries, inner yards, non-right-angled corners, and 
nonlinear edges. The approach comprises four steps: 
building point segmentation, boundary tracing, boundary 
grouping, and regularization. In the second and third 
steps, conventional algorithms are improved for more 
accurate boundary extraction, and in the final step, a new 
algorithm is presented to extract nonlinear edges. The 
unique characteristics of airborne light detection and 
ranging (LIDAR) data are considered in some steps. The 
performance and practicality of the presented algorithm 
were evaluated for buildings of various shapes, and the 
average omission and commission error of building 
polygon areas were 0.038 and 0.033, respectively. 
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I. Introduction 

In recent years, airborne light detection and ranging 
(LIDAR) technology has been widely used in many fields 
owing to its high positioning accuracy, high surveying 
efficiency, and active sensing property. Building extraction is 
one of the most popular applications of LIDAR. Numbers of 
strategies have been presented to classify or filter LIDAR 
points to ground and nonground along with buildings [1]-[6], 
which aim at digital elevation model (DEM) generation or 
building extraction. Image processing techniques have been 
applied to extract buildings from raster grid data which is 
interpolated from LIDAR points [7]-[9]. Some researchers 
have constructed triangulated irregular network (TIN) models 
from LIDAR point data and then segmented buildings and 
extracted boundaries by some processes on the TIN model [10], 
[11]. A weakness of applying LIDAR data is that building 
boundaries cannot be clearly defined because the data relate to 
discrete points that are not necessarily on exact edges. Many 
techniques have been used to extract buildings by fusing 
LIDAR data and other data, such as satellite images, aerial 
images, or building plans [12], [13]. It is true that fusion of 
LIDAR and aerial images provides the most reliable building 
information if both of them are fully usable. However, 
occlusion or shadow in aerial images of densely urban areas 
makes it difficult to extract all edges in aerial images. In this 
context, regularization of building boundary derived from 
LIDAR is necessary in complex urban areas. 

Generalization or regularization has been employed to 
refine the building boundaries, and many methods are based 
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on rectangularity and orthogonality conditions. Fu and Shan 
[14] used three primitive models with a horizontal rectangular 
base to describe buildings with right-angled corners. Alharthy 
and Bethel [15] presented a polygon extraction algorithm that 
estimates the dominant directions of boundaries using a 
rotating template and angle histogram. Weidner and Förstner 
[16] utilized the minimum description length method to 
regularize ragged building boundaries. Ma [8] classified line 
segments into two perpendicular groups and carried out a 
weighted adjustment to calculate the azimuth of the two 
classes. Sampath and Shan [17] utilized a hierarchical least-
squares method under the condition that the slopes of parallel 
lines are equal and the product of the slopes of perpendicular 
lines is –1. Lach and Kerekes [18] presented an algorithm 
that forces boundary line segments to be parallel or 
perpendicular to the dominant building orientation when 
appropriate and fits the data without constraint elsewhere. 
Sohn and others [19] developed a compass line filter to 
extract straight lines from irregularly distributed LIDAR 
points. Shen [20] utilized the alpha-shape algorithm to trace 
boundary points and applied a circumcircle regularization 
method to rectangular buildings. 

In summary, previous approaches start from the assumption 
that a building boundary is composed of straight line segments, 
and many of them also assume that the segments are in only 
two dominant directions. In addition, there have been few 
attempts to trace a building boundary with inner yards from 
LIDAR points. This restricts wider application, necessitating 
the development of more delicate methods to deal with 
buildings with complex boundaries. 

The study aims to detect and regularize various types of 
building boundaries including concave, non-right-angled, and 
nonlinear edges along with inner yards. The approach consists 
of four steps: building segmentation from a point cloud, 
boundary tracing, boundary grouping, and boundary 
regularization. In the first step, raw LIDAR points are 
segmented into homogeneous groups sharing similar altitudes, 
and various building groups are selected. Next, the convex hull 
algorithm is modified such that an elliptical neighborhood 
search is applied to trace boundary points more compactly. It is 
extended to trace the inner yard boundary by finding a seed 
point of the inner yard boundary. In the third step, critical points 
are detected through a progressive sleeve-fitting algorithm 
followed by angle-based generalization, and the points between 
two adjacent critical points are grouped to produce a line or an 
arc segment. The segments of a building are then classified into 
four types, and building boundaries are refined by deriving 
final parameters under different constraints according to the 
type of each segment. In each step, the characteristics of the 
airborne LIDAR scan profile are considered for more accurate  

 

Fig. 1. Flowchart of presented approach. 
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boundary extraction. These steps, shown in Fig. 1, are 
explained in more detail from sections II to V. Section VI 
presents the experimental results obtained by applying the 
proposed method to several buildings of different shapes. 
Finally, conclusions and future research directions are 
discussed in section VII. 

II. Segmentation 

Raw LIDAR points have to be segmented in advance to 
extract building boundaries. Generally, ground points and 
nonground points are first separated from raw LIDAR data by 
using filtering or classification algorithms, and then 
segmentation is conducted to classify nonground points into 
different buildings [1]-[6]. In our previous research [4], an 
algorithm was proposed to classify raw LIDAR points into 
points belonging to the same building. The algorithm is partly 
similar to region growing and unsupervised classification. The 
first input point becomes the seed point of the first group. The 
next input point is then compared with the points belonging to 
the first group. If they are adjacent and have similar height, the 
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input point is classified in the first group; otherwise, it becomes 
the seed point of a new group. In this way, input points become 
members of existing groups or the seed points of new groups. 
Using this segmentation algorithm, it is possible that in only 
one process, raw LIDAR points are separated into different 
buildings, and moreover, points in one building are grouped 
into several parts with different heights. 

III. Boundary Tracing 

After building points have been segmented, the next step is 
boundary tracing, which is done to find the outermost and 
innermost points of a building. The presence of concavity in 
irregularly distributed points makes it difficult to trace all the 
boundary points without missing the concave corner. To deal 
with this problem, Jarvis [21] modified the convex hull 
algorithm to limit the searching space. Sampath and Shan 
[17] modified the convex hull algorithm to limit the searching 
space to a rectangle, considering uneven LIDAR point 
spacing in the along-scan and across-scan directions. Shen 
[20] traced a boundary from LIDAR points by applying the 
alpha-shape algorithm proposed by [22], where a circle of 
certain radius rolls around the points and forms the boundary 
of the point set on the plane. In this step, we modify the 
convex hull algorithm to trace a more compact boundary, and 
we extend it to trace an inner yard boundary while excluding 
inner holes due to occlusion. 

1. Convex Hull Algorithm with Elliptic Neighborhood 

The convex hull algorithm determines the smallest convex 
set containing discrete points. Among a few convex hull 
algorithms, we utilize the Jarvis march algorithm (also called 
the gift wrapping algorithm), which is the simplest algorithm 
in the case of a plane [23]. First, we determine the first 
boundary point, which has a minimum x-coordinate among 
all the points in a building. We then draw line segments to 
connect the last found boundary point with the other points in 
the building. The point that gives the smallest clockwise 
angle from the negative y-axis is chosen as the next boundary 
point. We repeat above processes using the previously formed 
boundary edge instead of the y-axis until the first boundary 
point is found again. 

To trace a more compact boundary, we modify the convex 
hull algorithm by restricting the search space to an elliptical 
neighborhood. The major axis of the ellipse corresponds to the 
across scan line direction, and the dimensions of the ellipse are 
set to about one and a half of the point spacing in the across-
scan and along-scan directions. The equation describing the 
elliptical neighborhood is 

 

 
 

 

Fig. 2. Illustration of modified convex hull algorithm with (a) 
elliptical neighborhood (the presented method), (b) 
rectangular neighborhood, and (c) circular neighborhood.
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where θ  is the counterclockwise angle from the positive   
x-axis to the LIDAR scan profile, c c( , )x y  are the coordinates 
of the boundary point found just previously, Salong and Sacross are 
the average point spacings in the along-scan and across-scan 
directions, respectively, and k is a coefficient denoting the 
ellipse dimension. 

The data in Fig. 2 shows larger point spacing in the across-
scan direction than in the along-scan direction, which is 
considered only in the case of using an ellipse or rectangle. The 
red circle or rectangle represents a searching space from the 
previously detected boundary point b3. In detecting the next 
boundary point, the convex hull algorithm using a rectangle or 
circle may miss the point p2 and detect the next point p3. 
Alternatively, the presented method using an elliptical 
neighborhood detects the exact corner point p2 at the concave 
corner. In this way, a more compact boundary can be traced 
with one ground spacing of LIDAR points and fewer points are 
missed at the concave corner. 

2. Inner Boundary Tracing 

Segmented LIDAR building points may contain empty  
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Fig. 3. Inner boundary tracing: (a) building with several holes and
(b) allowed point spacing. 
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spaces. Only some empty spaces represent inner yards to be 
detected, but others result from occlusion. The building in Fig. 
3(a) not only has an inner yard but also five small holes that are 
due to occlusion by more highly elevated parts expressed by a 
darker color. Hence, it is not a trivial problem to trace only the 
inner yard boundary among the empty spaces. The convex hull 
algorithm traces only the outer boundary not the inner 
boundary, while the alpha-shape algorithm can trace the inner 
boundary and also detect small inner holes due to occlusion. 

To extend the presented boundary tracing algorithm to trace 
an inner yard boundary, we develop the algorithm to find the 
seed point of an inner yard boundary. If we know only the seed 
point of an inner yard boundary, the inner boundary can be 
traced in the same way as the outer boundary is traced. 

Figure 3(b) indicates that it is very likely that two points are 
inner yard boundary points if they are further apart than the 
allowed point spacing, which is defined as the average point 
spacing added to the displacement DR due to the height 
difference between the two points. Given the maximum scan 
angle αmax, the allowed point spacing can be written as 

allowed avr R avr maxΔ tanS S D S H α= + = + × ,       (2) 

where Savr is the average point spacing in the along-scan 
direction, and ΔH  is the height difference of two adjacent 
points on the same scan line. If the spacing between two 
adjacent points is at least 30% greater than Sallowed, the two 
points are regarded as points of an inner yard boundary, and 
they become members of a set PS. The point-spacing 
irregularity method would fail for near vertical laserbeams. 
Two points, therefore, become members of PS only if the 
spacing is greater than 10% of the dimension of a building. The 
dimension of each building can be approximated by the first 
and last points on a scan line. The set P1(⊂PS ) of candidates 
for the seed point of an inner yard boundary satisfies the 
condition 1 OP B ϕ∩ = , where BO is a set of outer boundary 
points. The minimum x-coordinate point in P1 is selected as the 
seed point of an inner boundary. Boundary points of an inner 

yard are then detected in the same way as the outer boundary is 
traced, and they make up a set B1. 

To trace another inner boundary, we determine a 
set 2 1( )P P⊂ , which satisfies the conditions 2 OP B ϕ∩ =  
and φ=∩ 12 BP . The minimum x-coordinate point in P2 is 
selected as the seed point of another inner boundary, and the 
inner yard boundary is traced. The above processes are 
repeated until a set Pi is an empty set. 

IV. Grouping of Boundary Points 

Once the boundary points of a building are traced, we apply 
simplification or generalization to detect critical points that 
show an obvious turning in shape. If the critical points are 
determined through simplification or generalization, boundary 
points can be grouped by the critical points, which become the 
starting point or ending point of each segment. The Douglas-
Peucker algorithm [24], Jenks algorithm [25], and sleeve-fitting 
algorithm [26] are good examples of generalization, but there 
are limitations in applying such conventional generalization 
algorithms directly to building boundaries. Therefore, we apply 
the sleeve-fitting algorithm progressively followed by angle-
based generalization. 

In the sleeve-fitting algorithm, a sleeve (rectangular strip in 
two dimensions) deletes points that are contained within, and 
the width of the sleeve determines how much the points in a 
segment can deviate. We see from Fig. 4(a) that p3 is 
determined as a noncritical point because points p2 and p3 lie 
inside the sleeve. Whether a point is inside a sleeve is 
determined by using sector bound, because it is far easier to 
work with angle (sector bounds) than ε-buffering (epsilon 
bounds) and the two are geometrically equivalent as shown in 
[26]. In Fig. 4(b), point p2 is deleted if and only if point p3 lies 
in the dashed area. The dashed area (sector bounds) is defined 
as a point set given by 
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where 0( , )p qα  is the angle measured counter-clockwise 
from the positive x-axis to the line 0p q , and 0 1( , )d p p  is the 
distance from point p0 to point p1. 

The only parameter of the sleeve-fitting algorithm is the 
width of the sleeve, which has much influence on the 
generalization result. While a narrow sleeve will result in too 
many redundant critical points, a wide sleeve may miss some 
critical points. Because it is not easy to find an appropriate 
width of a sleeve, we perform the sleeve-fitting algorithm 
multiple times from a narrower sleeve to progressively wider  
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Fig. 4. Concept of the sleeve-fitting algorithm. 
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sleeves. The width of a sleeve is expressed as 

1 2 along across( ) min( , )D k k i S S= + × × ,          (4) 

where i is the number of iterations. The width of a sleeve in the 
first run is set by k1, and how much the width increases in the 
next run is determined by k2. We apply the sleeve-fitting  
algorithm in the forward direction and reverse direction in each 
iteration to compensate for a potential angular bias as in [16]. 

To discard redundant critical points further, we conduct 
angle-based generalization. For all remaining critical points, we 
calculate the angles between two adjacent lines formed by 
connecting two adjacent critical points. If the largest angle in a 
building is greater than a threshold, the point is regarded as a 
redundant point and is discarded. In this study, 160° is used as 
the angle threshold. Angle-based generalization discards one 
critical point at a time, and it is repeated until no more critical 
points are removed. 

Because boundary points of a building are stored in good order 
(clockwise), critical points obtained through generalization are 
used as the first and last points of each group. The points 
between two adjacent critical points are grouped into segments, 
and each group corresponds to a line segment or an arc segment. 

V. Boundary Regularization 

In reality, some buildings have line segments with more than 
two directions, and furthermore, some buildings have nonlinear 
segments. Therefore, we classify the boundary segments into 
four types and use different methods for each type: line 
segments with dominant direction, line segments with 
perpendicular direction, line segments with other directions, 
and arc segments. The first work in boundary regularization is 
to determine whether a segment is an arc segment. 

1. Arc Segment Detection 

If a set of points is distributed with even spacing and near 
continuity, it is possible to derive an arc easily from the points 
on the basis of curvature. However, the points on an arc  

 

Fig. 5. Two components for arc detection: (a) theorem of 
perpendicular projection through midpoint of chord and
(b) point distributions of arc and straight line segment. 
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segment obtained from LIDAR data have a discontinuous and 
uneven distribution. We develop two measures in order to 
detect arc segments. The first measure is based on the theorem 
that the center of a circle or an arc should lie on a perpendicular 
projection through the midpoint of a chord that connects any 
two points on it (Fig. 5(a)). If there are n points on a segment, 
there are n(n–1)/2 lines connecting two points, and at most, the 
lines have n(n–1)(n2–n–2)/8 points of intersection of two 
perpendicular projections passing through the midpoint of each 
line. The largest number of intersections is obtained for points 
on an ideal arc, in which case, all the perpendicular projections 
intersect only at one point, that is, the center of the arc. For 
points on a perfectly straight line, any two perpendicular 
projections do not intersect. 

Whether a set of points on a segment makes up an arc or a 
straight line is determined by how many projections intersect at 
the same point. A 1 m × 1 m grid is generated around the points 
of the segment, and each cell is attributed the count of how many 
pairs of two projections intersect inside it. The cell that has the 
maximum attributed value is the potential location for the center 
of the arc. To accomplish this, we use the ratio of the maximum 
cell value to the total number of possible intersections: 

int 2
8 max( ( ))

( 1)( 2)
A iR

n n n n
×

=
− − −

,              (5) 

where A(i) is the number of intersections in the i-th cell, and n 
is the number of points on the segment. 

In the case that points of a segment deviate greatly from the 
fitting line, a straight line segment may be mistaken as an arc 
segment owing to its large ratio Rint. To avoid such error, we 
additionally use the absolute value of the sum of the signed 
distance (ASSD). The plane in which the points of a segment 
exist can be divided into two parts by a line npp1 , which 
connects the first and last points of the segment. We see from 
Fig. 5 that all the points of an arc segment are likely to lie on 
the same side of the line 1 np p , but points of a line segment lie 
on both sides of the line 1 np p . On the basis of this property, 
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where di is the distance from point pi to line 1 np p , and  
ccw(p1, pn, pi) is a function which returns a positive value for a 
point pi lying on the left (counterclockwise) of the line 1 np p  
and negative on the right. In this way, an arc segment has a 
larger ASSD value than a straight line segment. 

If both the ratio Rint and ASSD of a set of points on a segment 
are higher than thresholds, the segment is classified as an arc 
segment. If not, it is classified as a line segment. 

2. Determination of the Dominant Direction 

After arc segments and line segments are discriminated, line 
segments are further classified into one of three types: those of 
the dominant direction, perpendicular direction, and other 
directions. If the dominant direction of a building is determined, 
the three types can be defined easily. The dominant direction of 
a building is determined by the length-weighted average angle. 

In determining the dominant direction of a building, the 
characteristics of the LIDAR data are taken into consideration 
to obtain building boundaries that are more accurate. There is 
some spacing between LIDAR scan lines in most cases and the 
data used in this study have spacing of about 1 m. Therefore, in 
the case where the directions of building boundary segments 
are somewhat different from the LIDAR scan direction, there 
may be skewing errors in calculating the dominant direction of 
a building. To avoid this, we calculate the dominant direction 
of a building by excluding segments whose directions are 
within εθ, a buffer of the scan direction. 

To begin, we first find the parameters of the line fitting each 
line segment Si by general least squares, and compare the angle 
from the x-coordinate to Si with the LIDAR scan direction. The 
longest segment that satisfies the condition of (7) is selected as 
the seed segment Sseed for calculation of the dominant direction: 

seed ; max( ) ( 1, 2, , ),k k i i sS S l l i n θθ θ ε= = = − > , (7) 

where θs is scan direction and li and θi mean the length and the 
angle from the x-coordinate of a segment Si, respectively. Now, 
the dominant direction θd is equal to the angle of segment Sseed. 
It is then determined whether each segment is involved in the 
calculation of the dominant direction one by one: 

n s n d 1

n n

if , ,
then , ( 0 , 90 , 90 )

otherwise , 0 , 0,
l l
l

θθ θ ε θ δ θ ε

θ θ δ δ
θ
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= + = = ° ° − °
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where ln and θn are the length and angle of a new checking 
segment, respectively. δ=0° means that the checking segment 
is nearly parallel with the dominant direction, and δ=90°, –90° 
means the segment is nearly perpendicular to the dominant 
direction. If a new checking segment satisfies the conditions, 
the dominant direction is updated including the length and 
angle of that segment: 

d d' ( ) / ( )i i
i i

l l lθ θ θ= × + +∑ ∑ .           (9) 

If the conditions of (8) are not satisfied, the angle and length 
of that segment are input as zero into (9), which results in no 
updating of the dominant direction. This computation is 
repeated for all line segments, and thus, the dominant direction 
is obtained. We now define the direction perpendicular to the 
dominant direction as θp=θd±90°. 

3. Final Building Boundary 

The least-squares method has been widely used to find the 
unknown parameters of a line or circle from a set of points. 
Now that we have computed the dominant direction and 
perpendicular direction for each building, line segments are 
classified into three types on the basis of their directions. A 
parametric line is derived employing the least-squares method 
under different slope conditions according to the type of line 
segment. 

If a segment has a direction similar to the dominant direction 
θd, the segment is forced to be parallel with the dominant 
direction. The unknown parameters of the line segment are 
found by employing least-squares method under the constraint 
that the line has a slope of θd. If a segment has a direction 
similar to the perpendicular direction θp, the unknown 
parameters of the line segment are found in the same way as 
for a segment with a dominant direction. In this case, θp is used 
for θd in the adjustment: 

1
d 1 d 1 d
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(10) 
where xij and yij are the x-coordinates and y-coordinates of the  
j-th point of the i-th line segment, respectively, and θi is the 
counterclockwise angle from the x-coordinate to the i-th line 
segment. For other line segments whose directions are much 
different from the dominant direction or perpendicular 
direction, the unknown parameters are found employing the 
general least-squares method without any constraints of slopes. 

For a set of points on an arc segment, the unknown 
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parameters are found by least-squares circle fitting, and the 
equations for center point (xc , yc) and radius R are: 

2 3 2 3 2
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(11) 
where nxxu iii /∑−=  and nyyv iii /∑−= . 

Now that we have found all the parameters of the line 
segments and arc segments, the intersection points of two 
adjacent segments make up the final building boundary. If a 
line segment has the same slope as an adjacent line segment, 
they are parallel and never intersect. In this case, the two 
segments are merged as one segment, and the parametric line is 
newly derived using all the points in it. 

VI. Experimental Results and Discussion 

1. Evaluation and Inspection of Results 

To evaluate the proposed approach, we use the first returns of 
LIDAR data for the city of Daejeon, Korea collected with 
Optech LIDAR equipment. The specifications of the utilized 
LIDAR data are given in Table 1. After segmentation, we 
select a large variety of buildings, including rectangular 
buildings, rectilinear buildings with more than two dominant 
directions, buildings with inner holes, and buildings also 
having nonlinear segments. Threshold values utilized for 
experiments are listed in Table 2. 

In Fig. 6, 6(a) in each row shows segmented LIDAR points 
overlaid atop the TIN surface model, 6(b) shows critical points 
after progressive sleeve fitting with traced boundary points, and 
6(c) shows the final regularized building boundaries overlaid 
atop segmented building points. The values in 6(d) show the 
dimension of each building, and the omission and commission 
error of the area. 

The first set of LIDAR data is for rectangular buildings, 
which have different sizes and various numbers of line 
segments. The line segments have only two directions, which 
are perpendicular to each other, and each building has several 
concave corners. Figure 6 shows that most of the building 
edges are determined quite well. The regularized building 
boundaries show good delineation of the real buildings at most 
concave corners except for the upper right concave corner of 
the second building and the middle corner of the third building. 
The former is due to missed points in boundary tracing, and  

Table 1. Specifications of LIDAR data. 

System ALTM 3070 (Optech, Inc.) 

Point spacing 0.8 m (along), 1.3 m (across) 

Scan angle 0 to±25° 

Flying height 1,500 m 

Beam divergence 0.3 mrad 

Table 2. List of threshold values. 

Threshold Value Description 

k 1.5 Denote ellipse dimension 

maxα  25° Maximum scan angle 
k1, k2 0.8, 0.3 Decide width of a sleeve 

Rint 0.08 Ratio of the maximum cell value to 
the total number 

ASSD 1.2 m The absolute value of the sum of the 
signed distance 

θε  10° Buffer for the scan line direction 

1ε  15° Buffer for line segment direction 

 

 
the latter is due to the protruding part being quite small 
compared with the building size.  

The second set contains buildings whose boundary segments 
have more than two directions. Line segments with directions 
similar to the dominant direction or perpendicular direction are 
forced rightly to be parallel or perpendicular, whereas the 
segments with other directions are modeled well, and their 
original directions are preserved. 

The third set of LIDAR data is for three buildings, each 
having one or two arc segments as well as several straight line 
segments. In differentiating between arc segments and line 
segments, the best results are acquired when 0.04 and 1.2 are 
used for the thresholds of Rint and ASSD, respectively. Four arc 
segments of the three buildings are identified properly as arcs, 
and one arc segment, which is at the lower right corner of the 
sixth building, is mistaken for line segment. The threshold for 
Rint is small and sensitive to the noise or point distribution. If 
raw LIDAR points are acquired more densely, the 
identification of arcs will be less sensitive and the proposed 
method will be more robust. Also, fusing airborne LIDAR and 
aerial images will be a better solution for the problem because 
an aerial image represents clear edge information of circular 
arcs as well as straight lines. 

In the case that a line segment and arc segment meet, it is 
rarely possible to detect the exact critical points in boundary 
grouping. Nevertheless, the final building boundary is modeled 
with an equation of a line or circle, and it is well adjusted  
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Fig. 6. Building boundary extraction results: (a) segmented
building points, (b) building boundary points and critical
points, (c) regularized building boundary, and (d)
building dimensions, omission and commission error of
each polygon area. 
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by intersection points. More accurate delineation of complex 
buildings can be achieved by modeling nonlinear segments 
with arcs. Moreover, the storage space required for a final 
building model is reduced if we store an arc segment as three 

points: the starting point, ending point, and midpoint. 
The final set shows linear boundaries for two orthogonal 

directions and some empty interior space. The building not 
only has an inner yard but also five small holes, which have to 
be distinguished from the inner yard to extract building 
boundaries that are more exact. The boundary of the inner yard 
is detected well using the presented approach, with the five 
small inner holes being excluded. This can be achieved by 
determining the seed point of the inner yard boundary using the 
allowed point spacing. 

For quantitative analysis, we compared the areas of building 
polygons obtained from our method with that of reference 
polygons, which were generated from digital maps and aerial 
photos. We calculated omission and commission error for each 
building polygon. It is given in Fig. 6, and the average omission 
and commission errors are 0.038 and 0.033, respectively 

2. Comparison with Other Methods 

To determine the performance of the presented approach, the 
results obtained using the presented method are compared with 
those obtained employing other methods. First, boundary 
tracing results obtained with the presented method (Fig. 7(a)) 
are compared with those obtained with the alpha-shape 
algorithm, the modified convex hull algorithm by [11], and the 
original convex hull algorithm. It is known that the original 
convex hull algorithm never detects points at a concave corner, 
and when applying the algorithm, the shapes of buildings are 
greatly distorted. 

Although two of the compared methods, the alpha-shape 
algorithm and modified convex hull algorithm of Sampath, 
detect compact boundary points, they miss a few crucial points 
at a concave corner, which is shown by the red circles in Fig. 7. 
It is possible to trace more compact points at the concave  
 

 

 

Fig. 7. Traced building boundary points obtained employing (a) 
proposed method (elliptical neighborhood), (b) alpha-
shape algorithm, (c) modified convex hull algorithm of
Sampath (rectangular neighborhood), and (d) original 
convex hull algorithm. 
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Fig. 8. Regularized building boundaries obtained employing (a)
proposed method considering scan direction, (b)
compared least-squares method without consideration of
scan line direction, (c) superimposition of them, and (d) 
aerial photo (D and P are dominant and perpendicular
directions acquired from aerial photo, and S is scan 
direction). 
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corner using the presented method, which restricts the search 
space to an elliptical neighborhood. 

The convex hull algorithm and its modified version trace 
only the outer boundary but fails to trace the inner boundary 
(see Figs. 7(c) and (d)). The alpha-shape algorithm traces the 
inner boundary as well as the outer boundary but also extracts 
some small inner holes due to occlusion, which are shown by 
the blue rectangles in Fig. 7. The presented boundary tracing 
method traces the inner yard boundary, excluding the inner 
holes. This is achieved by distinguishing the inner yard from 
inner holes utilizing the allowed LIDAR point spacing based 
on the height difference between adjacent points. 

Second, the results obtained employing the presented 
regularization method are compared with those obtained using 
another method in which the dominant direction is calculated 
without consideration of the LIDAR scan direction and all 
segments are assumed to be straight lines. The presented 
approach calculates the dominant direction, excluding 
segments whose directions are similar to the along-scan 
direction, and discriminates arc segments from line segments. 

In the case of the LIDAR data used in this study, the 
directions of some line segments are similar to the along-scan 
direction. Figure 8(a) shows that the regularized building 
boundary obtained by employing our method is correctly 
determined without skewing, and there is good agreement with 
the reference directions (D and P) acquired manually from the 
aerial photo. In Fig. 8(b), the final building boundary segments 
are rotated globally counterclockwise and are nearly parallel or 
perpendicular to the scan direction, which is more obvious for 
the upper building. 

The compared method describes a nonlinear edge as a 
straight line, and the regularized boundary is distorted. On the 
other hand, the presented method describes a nonlinear edge as 
an arc segment, and the regularized boundary is more similar to 
the real building boundary. If the raw LIDAR data is acquired 
more densely, the boundary determined employing our 
approach will better approximate the real building. 

3. Discussion 

The proposed procedure focuses on reconstructing 2D 
building boundaries from single strip LIDAR data. Some 
threshold values utilized in the proposed method are based on 
distribution characteristics of single strip LIDAR points. When 
overlapping strips are concerned, point spacing will be smaller 
and the related threshold values can be adjusted. If they are not 
parallel, some conditions including scan direction cannot be 
utilized, which should be remarked as a limitation of the 
method. 

The proposed procedure is capable of producing a 2D 
building polygon or 3D prismatic building models, but not 3D 
building models with a tilted roof or a superstructure. However, 
prismatic building models or 2D building polygons are used in 
most of web-based maps and 3D navigation maps. In this 
context, the proposed approach will be useful to update 
building information of maps. 

VII. Conclusion 

An approach for detecting and regularizing various building 
boundaries from airborne LIDAR points was presented. The 
approach has four steps: building point segmentation, boundary 
tracing, boundary grouping, and boundary regularization. The 
experimental results show that the approach works well for 
complexly shaped buildings and produces quite robust 
boundaries. A concave boundary is traced more compactly by 
applying an elliptical search space based on uneven LIDAR 
point spacing for convex hull generation, and application of the 
allowed point spacing makes it possible to trace only the inner 
yard boundary and not holes. In cases where buildings have 
multiple directions and nonlinear edges, the boundaries are 
effectively regularized by differentiating nonlinear edges from 
linear edges with Rint and ASSD. As a result, building 
boundaries represented as arc segments and line segments 
delineate the real buildings well. In addition, considering the 
LIDAR scan direction in calculating the dominant direction 
prevents the building boundary from skewing. In future work, 
the approach will be extended to extract 3D building models 
from terrestrial LIDAR data, and components with more 
complex shapes will be detected and regularized. 
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