• Title/Summary/Keyword: Bottom water

Search Result 2,178, Processing Time 0.031 seconds

Properties of Controlled Low-Strength Material Containing Bottom Ash (Bottom Ash를 혼합한 저강도 고유동 충전재의 특성)

  • 원종필;이용수
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.3
    • /
    • pp.294-300
    • /
    • 2001
  • The effectiveness of bottom ash on the mechanical and physical properties of Controlled Low-Strength Material(CLSM) is investigated in this study, CLSM is defined by the ACI Committee 229 as a cementitious material that is in a flowable state at the time of placement and having a specified compressive strength of 83 kgf/$\textrm{cm}^2$ or less at the age of 28 days. This study was undertaken on the use of bottom ash as a fine aggregate in CLSM. Four different levels of bottom ash with fly ash contents, 25%, 50 %, 75%, 100%, are investigated. Laboratory test results conclude that inclusion of bottom ash increases the demand for mixing water in obtaining the required flow. However, the sand was reduced because it was adjusted to maintain a constant total volume. Miかe proportions were developed for producing CLSM at three 28-day strength levels: removal with tools (less than 7 kgf/$\textrm{cm}^2$), mechanical means (less than 20 kgf/$\textrm{cm}^2$), and power equipment (less than 83 kgf/cm\`). The physical and mechanical properties supports the concept that by-product bottom ash can be successfully used in CLSM.

Environmental Evaluation of Fish Aquafarm off Baegyado in Yeosu by Multivariate Analysis (다변량분석에 의한 여수 백야도 어류양식장의 해양 환경분석)

  • LEE, Chang-Hyeok;KANG, Man-Gu;LIM, Su-Yeon;KIM, Jae-Hyun;SHIN, Jong-Ahm
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.3
    • /
    • pp.785-798
    • /
    • 2017
  • This study was conducted to evaluated the surface(10 variables) and bottom(10 variables) water quality, and sediment(3 variables) in the cage fish farm off Baegyado in Gamak Bay using a multivariate analysis from January 2013 to November 2014. Generally, the environmental data did not show a certain tendency by months during two years investigated. The pairwise simple correlation matrices among variables were also shown. The first four principal components of the surface water in 2013 explain 93% of the total sample variance; the first principal component($z_1$) showed the freshwater inflow and/or precipitation, $z_2$, $z_3$ and $z_4$ related to freshwater inflow and/or precipitation, organic matters and eutrophy, respectively; the first four principal components of the bottom water in 2013 explain 93% of the total sample variance; the $z_1$, $z_2$ and $z_4$ related to freshwater inflow and/or precipitation, and $z_3$ water temperature. In 2014, at the surface water the first three principal components explain 87%; the $z_1$, $z_2$ and $z_3$ related to water temperature, eutrophy and freshwater inflow and/or precipitation, respectively; at the bottom water the first three principal components explain 93%; $z_1$, $z_2$ and $z_3$ related to water temperature, freshwater inflow and/or precipitation and eutrophy. Half of the principal components related to freshwater inflow and/or precipitation.

Evaluation of the Performance of Water Quality Models for the Simulation of Reservoir Flushing Effect on Downstream Water Quality (저수지 플러싱 방류가 하류 수질에 미치는 영향 모의를 위한 수질모델의 성능 평가)

  • Jung, Yong Rak;Chung, Se Woong;Yoon, Sung Wan;Oh, Dong Geun;Jeong, Hee Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.48-57
    • /
    • 2009
  • A two-dimensional (2D), laterally-averaged hydrodynamic and water quality model, CE-QUAL-W2 was applied to evaluate the performance on simulating the effect of flushing from Daecheong Reservoir on the downstream water quality variations during the flushing events held on November, 2003 and March, 2008. The hydraulic and water quality simulation results were compared with field measurement data, as well as a one-dimensional (1D), unsteady model (KORIV1) that revealed limited capability in the previous study due to missing the resuspension process of river bottom sediments. The results showed that although the 2D model made satisfactory performance in reproducing the temporal variations of dissolved matters including phosphate, ammonia and nitrate, it revealed poor performance in simulating the increase of biological oxygen demand and suspended sediment (SS) concentrations during the passage of the flushing flow. The reason of the error was that the resuspension process of the 2D model is only the function of shear stress induced by wind. In reality, however, as shown by significant correlation between bottom shear stress ($\tau$) and observed SS concentration, the resuspension process can be significantly influenced by current velocity in the riverine system, especially during flushing event. The results indicate that the resuspension of river bottom materials should be incorporated into the water quality modeling processes if $\tau$ is greater than a critical shear stress (${\tau}_c$) for better simulation of flushing effect.

Seasonal Variation of Heterotrophic Bacteria of the Marine Ranching Ground of Tongyeong Coastal Water, Korea (통영 바다목장 해역의 종속영양세균의 계절적 변화)

  • 김말남;임아현;이진환;김종만
    • Korean Journal of Environmental Biology
    • /
    • v.22 no.1
    • /
    • pp.75-82
    • /
    • 2004
  • Surface and bottom sea water samples were harvested from the 5 stations in the marine ranching ground of Tongyeong coastal water from year 2000 to 2002. Cell number of heterotrophic bacteria was determined by using the plate counting method to explore the variation of the cell population of heterotrophic bacteria. Sea water samples collected in summer (in July and August) contained much larger number of heterotrophic bacteria than those harvested in spring, autumn and winter. Heterotrophic bacteria were usually more abundant in surface sea than in bottom sea water. However the reverse was true for sea water collected in December 2001 and February 2002 due to suspended solids accumulating more abundantly in seabed area because of the slower convective current of the sea water in winter. Number of heterotrophic bacteria did not have a strong relationship with frequency of typhoon indicating that the path and powerfulness of the typhoon, localized torrential downpour and temperature variation accompanying the typhoon should be considered all together at the same time as well as the frequency of typhoon to explain clearly the variation of cell number of heterotrophic bacteria. The dominant species isolated from the marine ranching ground of Tongyeong were identified to be Pseudomonas fluorescens, Pseudomonas stutzeri, Acinetobacter lwoffii and Sphingomonas paucimobilis.

Evaluation of Leaching Characteristics of Bottom Ash and Waste Tire (컬럼실험을 통한 바텀애쉬 및 폐타이어의 용출특성 평가)

  • Lee, Jea-Keun;Koh, Tae-Hoon;Sa, Kong-Myong;Lee, Sung-Jin;Lee, Tae-Yoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.682-689
    • /
    • 2010
  • The purpose of this study was to determine any detrimental effects on surrounding environments by using bottom ash, waste tire, and mixture as a fill material to raise the ground level. Three different initial pHs (4, 6, 8) were applied to bottom ash and initial pH of 4 was used to waste tire and mixture. Among 7 heavy metals, Pb and Zn were exceeded drinking water standards but their concentrations decreased below drinking water standards within 1 PVE. Among 5 anions, sulfate exceeded 10 times of drinking water standards and further higher partition coefficients resulted in increased PVE of 8.21. For the mixture of bottom ash and waste tire, its concentrations of heavy metals and anions were decreased due to the dilution effect and lowered PVE from 8.21 (BA) to 5.89.

A Simplified Numerical Method for Simulating the Generation of Linear Waves by a Moving Bottom (바닥의 움직임에 따른 선형파의 생성을 모의할 수 있는 간편 수치해석 기법)

  • Jae-Sang Jung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.2
    • /
    • pp.41-48
    • /
    • 2023
  • In this study, simplified linear numerical method that can simulate wave generation and transformation by a moving bottom is introduced. Numerical analysis is conducted in wave number domain after continuity equation, linear dynamic and kinematic free surface boundary conditions and linear kinematic bottom boundary condition are Fourier transformed, and the results are expressed in space domain by an inverse Fourier transform. In the wavenumber domain, the dynamic free water surface boundary condition and the kinematic free water surface boundary condition are numerically calculated, and the velocity potential in the mean water level (z = 0) satisfies the continuity equation and the kinematic bottom boundary condition. Wave generation and transformation are investigated when the triangular and rectangular shape of bottoms move periodically. The results of the simplified numerical method are compared with the results of previous analytical solutions and agree well with them. Stability of numerical results according to the calculation time interval (Δt) and the calculation wave number interval (Δk) was also investigated. It was found that the numerical results were appropriate when Δt ≤ T(period)/1000 and Δk ≤ π/100.

Analysis of Strength Characteristic for Bottom Ash Mixtures as Mixing Ratio and Curing Methods (Bottom Ash와 혼합재료의 혼합비 및 양생방법에 따른 강도특성 분석)

  • Choi, Woo-Seok;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.129-140
    • /
    • 2013
  • Bottom Ash is industrial by-product from a thermoelectric power plant. An immense quantities of bottom ash have increased each year, but most of them is reclaimed in ash landfill. In this study, in order to raise recycling rate of Bottom Ash, it is suggested to cure Bottom Ash (BA) mixtures mixed with cement, lime, Fly Ash (FA), and oyster shell (OS). Mixtures of 5~20 % mixing ratio had been cured for 1, 3, 7, 14, and 28 days using sealed curing and air-dry curing method. Unconfined compressive strength test was conducted to determine strength and deformation modulus ($E_{50}$) change for mixtures as mixing ratio and curing day, water contents of mixtures were measured after test. As a result, strength and $E_{50}$ were increased as mixing ratio and curing days, but values and tendencies of them appeared in different as kind of mixture, mixing ratio, curing method, and curing days. The results showed the addition of cement, lime, Fly Ash, and oyster soil in Bottom Ash could improved strength and $E_{50}$ and enlarge its field of being used.

Environmental Conditions of Sediment and Bottom Waters near Sediment in the Downstream of the Nagdong River (낙동강 하류 수계에서 저층수 및 저질퇴적층의 환경)

  • Jung, Ha-Young;Cho, Kyung-Je
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.311-321
    • /
    • 2003
  • We surveyed physico-chemical properties of bottom water and sediment to evaluate the influence of sediment on the eutrophication in the downstream of Nagdong River from 1998 to 2000. From May to August, DO concentration of bottom waters dropped below 5 mg $O_2/l$ and $NH_4\;^+$ and $PO_4\;^{3-}$ concentrations significantly increased in the bottom waters, resulting in the great differences between surface and bottom waters. Fluxes across water-sediment interface would be substantially active in this period. The serial orders of the water fertility or eutrophication were Joman River > Sonagdong River > Nagdong River. The organic nutrient contents of sediment increased toward the lower parts of the river system. Organic contents of the sediment would be under the influence of water pollution and exhibited a negative correlation with sediment bulk-density or particle size. The concentrations of exchangeable inorganic nutrients of sediment were greater than those of pore waters, and $PO_4\;^{3-}$, $NH_4\;^+$ and $SiO_2$ increased along the sediment depth. $PO_4\;^{3-}$ and $NO_3\;^-$ concentrations of the pore water were less than the overlying waters, while NH4+ and $SiO_2$ concentrations showed opposite trends. Exchangeable nutrients of sediment could be the repository for t]me nutrient exchange in the water-sediment interface.

Evaluation of Compressive Strength of Lightweight Aggregate Concrete using Bottom Ash Aggregates and Air Foam (기포가 혼입된 바텀애시 골재 경량 콘크리트의 압축강도 평가)

  • Lee, Kwang-Il;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.112-113
    • /
    • 2018
  • The present feasible tests are to develop the lightweight concrete using bottom ash aggregates and performed air foam for applying to sustainable high-insulation panel. The main variables investigated are water-to-binder, foam volume ratio, and curing conditions. Test results showed that the lightweight concrete possessed the compressive strength of 5~9 MPa at the air dry density of 951~1,139 kg/m3.

  • PDF

Alkali-Activated Coal Ash(Fly Ash, Bottom Ash) Artificial Lightweight Aggregate and Its Application of Concrete (알칼리 활성화 석탄회(Fly Ash, Bottom Ash) 인공경량골재 및 콘크리트 적용)

  • Jo Byung-Wan;Park Seung-Kook;Kwon Byung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.751-757
    • /
    • 2004
  • Artificial lightweight aggregates and solids were manufactured with coal ash(fly ash, bottom ash). In order to apply alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate to concrete, several experimental studies were performed. Thus, it can be noticed the optimal mix proportion, basic characteristies, mechanical properties and environmental safety of alkali-activated coal ash(fly ash, bottom ash) solid and alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate. Also, the freezing-thawing test property of concrete using the alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate was investigated. As a result, the optimal mixing proportion of coal ash(fly ash, bottom ash) solid to make alkali-activated artificial lightweight aggregates was cement $10\%$, water glass $15\%$, NaOH $10\%$, $MnO_2\;5\%$. Alkali-activated coal ash(fly ash, bottom ash) solid can achieve compressive strength of 36.4 MPa, at 7-days, after the paste was cured at air curing after moist curing during 24 hours in $50^{\circ}C$. Alkali-activated coal ash(fly ash, bottom ash) artificial lightweight aggregate that do impregnation to polymer was improved $10\%$ crushing strength $150\%$, and was available to concrete.