DOI QR코드

DOI QR Code

A Simplified Numerical Method for Simulating the Generation of Linear Waves by a Moving Bottom

바닥의 움직임에 따른 선형파의 생성을 모의할 수 있는 간편 수치해석 기법

  • Jae-Sang Jung (Hwa-an Project Office, Korea Rural Community Corporation)
  • 정재상 (한국농어촌공사 화안사업단)
  • Received : 2023.04.18
  • Accepted : 2023.04.24
  • Published : 2023.04.30

Abstract

In this study, simplified linear numerical method that can simulate wave generation and transformation by a moving bottom is introduced. Numerical analysis is conducted in wave number domain after continuity equation, linear dynamic and kinematic free surface boundary conditions and linear kinematic bottom boundary condition are Fourier transformed, and the results are expressed in space domain by an inverse Fourier transform. In the wavenumber domain, the dynamic free water surface boundary condition and the kinematic free water surface boundary condition are numerically calculated, and the velocity potential in the mean water level (z = 0) satisfies the continuity equation and the kinematic bottom boundary condition. Wave generation and transformation are investigated when the triangular and rectangular shape of bottoms move periodically. The results of the simplified numerical method are compared with the results of previous analytical solutions and agree well with them. Stability of numerical results according to the calculation time interval (Δt) and the calculation wave number interval (Δk) was also investigated. It was found that the numerical results were appropriate when Δt ≤ T(period)/1000 and Δk ≤ π/100.

본 연구에서는 바닥의 움직임에 따른 파랑의 생성 및 변화를 모의할 수 있는 간단한 선형 수치해석 기법을 소개한다. 연속방정식과 선형의 동역학적 및 운동학적 자유수면 경계조건, 선형의 운동학적 바닥 경계조건을 공간에 대해 푸리에 변환한 후 파수 영역에서 수치해석을 수행하며, 결과는 푸리에 역변환을 통해 공간영역에서 표현된다. 파수 영역에서 동역학적 자유수면 경계조건과 운동학적 자유수면 경계조건이 수치적으로 계산되며, 이 때 평균수면 (z = 0)에서의 속도포텐셜은 연속방정식과 운동학적 바닥 경계조건을 만족한다. 삼각형 및 사각형 형상의 바닥이 주기적으로 움직이는 경우의 파랑 생성 및 전파에 대해 검토하였다. 간편 수치해석 기법을 이용한 결과는 기존의 선형 해석해와 비교하였으며, 거의 일치하는 결과를 보였다. 계산 시간간격(Δt)과 계산 파수간격(Δk)에 따른 수치해석 결과의 안정성에 대해서도 검토하였다. 검토 결과 Δt ≤T(주기)/1000, Δk ≤ π/100 일 때 수치해석에 의한 결과가 적절하게 도출되는 것으로 나타났다.

Keywords

References

  1. Cecioni, C. and Bellotti, G. (2010). Modelling tsunami generated by submerged landslides using depth integrated equations. Applied Ocean Research, 32, 343-350. https://doi.org/10.1016/j.apor.2009.12.002
  2. Craig, W. and Sulem, C. (1993). Numerical simulation of gravity waves. Journal of Computational Physics, 108, 73-83. https://doi.org/10.1006/jcph.1993.1164
  3. Dommermuth, D.G. and Yue, D.K.P. (1987). A high-order spectral method for the study of nonlinear gravity waves. Journal of Fluid Mechanics, 184, 267-288. https://doi.org/10.1017/S002211208700288X
  4. Dytykh, D., Dias, F. and Kervella, Y. (2006). Linear theory of wave generation by a moving bottom. Comptes Rendus Mathematique, 343(7), 499-504. https://doi.org/10.1016/j.crma.2006.09.016
  5. Guyenne, P. and Nicholls, D.P. (2007). A high-order spectral method for nonlinear water waves over moving bottom topography. SIAM Journal of Scientific Computation, 30(1), 81-101. https://doi.org/10.1137/060666214
  6. Hammack, J.L. (1973). A note on tsunamis: their generation and propagation in an ocean of uniform depth. Journal of Fluid Mechanics, 60(4), 769-799. https://doi.org/10.1017/S0022112073000479
  7. Jung, J.-S. and Lee, C. (2022a). An analytical study of regular waves generated by bottom wave makers in a 3-dimensional wave basin. Journal of Korean Society of Coastal and Ocean Engineers, 34(4), 93-99 (in Korean). https://doi.org/10.9765/KSCOE.2022.34.4.93
  8. Jung, J.-S. and Lee, C. (2022b). Development of analytical solutions on velocities of regular waves generated by bottom wave makers in a flume. Journal of Korean Society of Coastal and Ocean Engineers, 34(3), 58-71 (in Korean). https://doi.org/10.9765/KSCOE.2022.34.3.58
  9. Jung, J.-S., Lee, C., Tran, M.T. and Park, Y.S. (2023). Generation of linear waves with bottom wave makers using analytical solution and extended mild-slope equations. Journal of Waterway Port Coastal and Ocean Engineering, in press.
  10. Jung, J.-S., Pham, V.K. and Lee, C. (2018). A study of performance of bottom moving wave maker: comparison of analytical solution and numerical analysis. Proceeding of the Korean Association of Ocean Science and Technology, Jeju ICC, Rep. of Korea, 54-57 (in Korean).
  11. Jung, T. and Son, S. (2021). Active tsunami generation by tectonic seafloor deformation of arbitrary geometry considering rupture kinematics. Wave Motion, 100, 102683.
  12. Lu, H., Park, Y.S. and Cho, Y.-S. (2017a). Modelling of long waves generated by bottom-tilting wave maker. Coastal Engineering, 122, 1-9. https://doi.org/10.1016/j.coastaleng.2017.01.007
  13. Lu, H., Park, Y.S. and Cho, Y.-S. (2017b). Investigation of long waves generated by bottom-tilting wave maker. Coastal Engineering Journal, 59(04), 1750018.
  14. Mahjouri, S., Shabani, R., Badiei, P. and Rezazadeh, G. (2021). A bottom mounted wavemaker in water wave flumes. Journal of Hydraulic Research, 59(4), 663-669. https://doi.org/10.1080/00221686.2020.1818314
  15. Wu, T.Y.T. (1987). Generation of upstream advancing solitons by moving disturbances. Journal of Fluid Mechanics, 184, 75-99. https://doi.org/10.1017/S0022112087002817
  16. Zakharov, V.E. (1968). Stability of periodic waves on finite amplitude on the surface of a deep fluid. Zhurnal Prikladnoi Mekhaniki I Technicheskoi Fiziki, 9(2), 86-94.