저수지 플러싱 방류가 하류 수질에 미치는 영향 모의를 위한 수질모델의 성능 평가

Evaluation of the Performance of Water Quality Models for the Simulation of Reservoir Flushing Effect on Downstream Water Quality

  • Jung, Yong Rak (Department of Environmental Engineering, Chungbuk National University) ;
  • Chung, Se Woong (Department of Environmental Engineering, Chungbuk National University) ;
  • Yoon, Sung Wan (Department of Environmental Engineering, Chungbuk National University) ;
  • Oh, Dong Geun (Department of Environmental Engineering, Chungbuk National University) ;
  • Jeong, Hee Young (Department of Environmental Engineering, Chungbuk National University)
  • 투고 : 2008.08.06
  • 심사 : 2008.11.10
  • 발행 : 2009.01.30

초록

A two-dimensional (2D), laterally-averaged hydrodynamic and water quality model, CE-QUAL-W2 was applied to evaluate the performance on simulating the effect of flushing from Daecheong Reservoir on the downstream water quality variations during the flushing events held on November, 2003 and March, 2008. The hydraulic and water quality simulation results were compared with field measurement data, as well as a one-dimensional (1D), unsteady model (KORIV1) that revealed limited capability in the previous study due to missing the resuspension process of river bottom sediments. The results showed that although the 2D model made satisfactory performance in reproducing the temporal variations of dissolved matters including phosphate, ammonia and nitrate, it revealed poor performance in simulating the increase of biological oxygen demand and suspended sediment (SS) concentrations during the passage of the flushing flow. The reason of the error was that the resuspension process of the 2D model is only the function of shear stress induced by wind. In reality, however, as shown by significant correlation between bottom shear stress ($\tau$) and observed SS concentration, the resuspension process can be significantly influenced by current velocity in the riverine system, especially during flushing event. The results indicate that the resuspension of river bottom materials should be incorporated into the water quality modeling processes if $\tau$ is greater than a critical shear stress (${\tau}_c$) for better simulation of flushing effect.

키워드

과제정보

연구 과제 주관 기관 : 수자원

참고문헌

  1. 건설교통부(2002). 금강수계 하천정비기본계획
  2. 김선미, 김규호, 홍일표, 서동일(1997). 금강 본류의 갈수시 수질관리를 위한 하천유지유량의 산정. 대한환경공학회지, 19(11), pp. 1347-1360
  3. 김윤희, 김범철, 최광순, 서동일(2001). 2차원 수리모델(CEQUAL-W2)을 이용한 소양호 수온 성층현상과 홍수기 밀도류 이동 현상의 모델링. 상하수도학회지, 15(1), pp. 40-49
  4. 안광국, 양우미(2007). 금강 수계의 수질 특성. 한국하천호수학회지, 40(1), pp. 110-120
  5. 유선재, 김종구, 권태연, 이석모(1999). 금강의 부영양화 현상에 관한 연구. 한국환경과학회지, 8(2), pp. 155-160
  6. 장연규(2004). 도심하천 복원에 따른 하천유지유량 산정 연구. 석사학위논문, 인천대학교
  7. 정세웅(2004a). 성층화된 저수지로 유입하는 탁류의 공간분포 특성 및 연직 2차원 모델링. 대한환경공학회지, 26(9), pp. 970-978
  8. 정세웅(2004b). 저수지 플러싱 방류 효과분석을 위한 비정상상태 하천수질모형의 적용. 한국수자원학회논문집, 37(10), pp. 857-868 https://doi.org/10.3741/JKWRA.2004.37.10.857
  9. 정세웅, 박재호, 김유경, 윤성완(2007). 대청호 부영양화 모의를 위한 CE-QUAL-W2 모델의 적용. 수질보전 한국물환경학회지, 23(1), pp. 52-63
  10. 정세웅, 오정국, 고익환(2005). CE-QUAL-W2 모형을 이용한 저수지 탁수의 시공간 분포 모의. 한국수자원학회논문집, 38(8), pp. 655-654 https://doi.org/10.3741/JKWRA.2005.38.8.655
  11. 정용락, 유환, 정세웅(2007). 저수지-하천 연속시스템의 수리, 수온 예측을 위한 CE-QUAL-W2 모델의 적용. 공동추계학술발표회 논문집, 대한상하수도학회.한국물환경 학회, pp. 445-454
  12. 정용락, 정세웅, 류인구, 최정규 (2008). 대청호와 하류하천연속시스템의 2차원 수리・수질 모의. 수질보전 한국물환경학회지, 24(5), pp. 581-591
  13. Barillier, A., Garnier, J., and Coste, M. (1993). Experimental reservoir water release: Impact on the water quality on a river 60 km downstream (upper seine river, France). Water Research, 27(4), pp. 635-643 https://doi.org/10.1016/0043-1354(93)90173-F
  14. Berger, C. J., Robert, L., Annear, Jr., and Wells, S. A. (2002). Upper Spokane River Mode: Model Calibration, 1991 and 2000. U.S. Army Corps of Engineers
  15. Chapra, S. C. (1997). Surface water quality modeling. McGraw-Hill, New York
  16. Chung, S. W. and Gu, R. (1998). Two dimensional simulations of contaminant currents in stratified reservoir. J. Hydr. Eng., 124(7), pp. 704-711 https://doi.org/10.1061/(ASCE)0733-9429(1998)124:7(704)
  17. Chung, S. W. and Kim, J. H. (2004). Development of water quality models for supporting NH3-N control in a dam regulated river. Water Sci. & Tech., 52(12), pp. 83-90
  18. Chung, S. W., Oh, J. K., and Ko, I. H. (2006). Calibration of CE-QUAL-W2 for a monomictic reservoir in monsoon climate area. Water Sci. & Tech., 54(12), pp. 29-37
  19. Chung, S. W., Oh, J. K., Ko, I. H., and Kim, Y. K. (2008). Effect of reservoir flushing on downstream river water quality. Journal of Environmental Management, 86, pp. 139-147 https://doi.org/10.1016/j.jenvman.2006.11.031
  20. Cole, T. M. and Wells, S. A. (2004). CE-QUAL-W2: A Two Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.2 User Manual. Instruction Report EL 03 1, U.S. Army Corps of Engineers. USA
  21. Environmental Laboratory (1995). CE-QUAL-RIV1: A Dynamic, One-dimensional (Longitudinal) Water Quality Model for Streams User's Manual. U.S. Army Corps of Engineers, Waterway Experiment Station, MS, USA
  22. Garcia, M. H. (2004). HYDRAULIC DESIGN HANDBOOK Chapter 6 : Sedimentation and Erosion Hydraulics. Mcgraw-Hill, http://www.digitalengineeringlibrary.com
  23. Green, W. R. (1998). Relations between reservoir flushing rate and water quality. http://aslo.org/phd/dialog/1998January-13.html
  24. Hipsey, M. R., Antenucci, J. P., Romero, J. R., and Hamilton, D. (2007). Computational aquatic ecosystem dynamics model: CAEDYM v3.1 science manual. Centre for Water Research, University of Western Australia
  25. Kang, S. W., Sheng, Y. P., and Lick, W. (1982). Wave action and bottom shear stresses in Lake Erie. J. Great Lakes Res., 8(3), pp. 482-494 https://doi.org/10.1016/S0380-1330(82)71987-2
  26. Malatre, K. and Goose, P. (1995). Is it possible to influence water temperature and quality in the river Seine upstream of Paris in summer by managing the upstream reservoir? Water Sci. and Tech., 31(8), pp. 67-77 https://doi.org/10.1016/0273-1223(95)00358-T
  27. Rounds, S. A. and Wood, T. M. (1998). Using CE-QUAL-W2 to assess the ammonia assimilative capacity of the Tualatin River, Oregon. in Proceedings of the First Federal Interagency Hydrologic Modeling Conference, Las Vegas, Nevada, April 19-23, 1998: U.S. Geological Survey, pp. 2-133-2-140
  28. Sullivan, A. B., Rounds, S. A., Sobieszczyk, S., and Bragg, H. M. (2007). Modeling hydrodynamics, water temperature, and suspended sediment in Detroit Lake, Oregon : U.S. Geological Survey Scientific Investigations Report 2007-5008, VA, USA
  29. Tanaka, N., Osugi, T., Nanami, Y., and Okano, M. (2004). Methods of environmental restoration for downstream of dams. Proc. Environmental Considerations for Sustainable Dam Projects, ICOLD 72nd Annual Meeting, May 16-22, 2004, Seoul, Korea. 45