• Title/Summary/Keyword: Boring noise

Search Result 19, Processing Time 0.023 seconds

Vibration Analysis of Boring Bar with Dynamic Vibration Absorber (동흡진기형 보링바의 진동해석)

  • Lee, Jae-Hyuk;Rim, Kyung-Hwa
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1796-1802
    • /
    • 2000
  • The purpose of this work is to analyze the vibration characteristic of boring bar with dynamic vibration absorber and find out the effective design parameters. Using the finite element method and modified optimum design concept, conventional optimum design based on approximate lumped parameter model is checked and practical design to be measured with modal analysis is compared with optimum design from numerical analysis. Also, the performance of reducing vibration is investigated with variation of shape of boring bar. The considered model of boring bar with dynamic vibration absorber is selected among manufactured boring bars with the best performance.

  • PDF

A Case on Excavation Plan and Design of Adjacent Railroad Tunnel (근접 철도터널의 굴착계획 및 설계 사례)

  • 김선홍;정동호;석진호;정건웅;서성호
    • Explosives and Blasting
    • /
    • v.20 no.3
    • /
    • pp.59-71
    • /
    • 2002
  • The points of this design case are the planning and excavation method of a new double-tracked railroad tunnel which is approx. 11∼22 meters apart from existing single-tracked railroad tunnel. For the optimum excavation method some needs are required in design stage, such as the reduction of noise and vibration, public resentment, damage of buildings and construction costs. Hence the estimation and application of allowable noise and vibration criterion is important. The ground coefficient (K, n) of this site is determined by field trial blasting. The excavation method is chosen to satisfy the allowable noise and vibration criterion. In addition, in order to ensure the stability of existing single-tracked railroad tunnel, the instrumentation of maintenance level is accompanied during the construction stage. As a result of this design condition, central diaphragm excavation with line drilling and pre-large hole boring blasting is applied to the area within 15 meters apart from existing tunnel. And above 15 meters apart, pre-large hole boring blasting is designed.

Characteristics of Impulsive Noise of Waterfront Construction Site and Its Effects on Fishes (수변 공사에 의한 충격음의 특성과 어류에 미치는 영향)

  • Bae, Jong-Woo;Park, Ji-Hyun;Yoon, Jong-Rak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.928-934
    • /
    • 2009
  • Underwater impulsive sound such as underwater blasting noise, piling noise and stone breaking hammer affects marine animal hearing response and organs. This study describes the characteristics of various impulsive noise from waterfront construction site and their effect on fish. Time constant, peak pressure, energy and SEL(sound exposure level) of four different underwater impulsive sounds are quantified. Auditory and non-auditory tissue damage ranges are derived by comparing their quantities to the exposure criteria for fish. Damage ranges of auditory tissue and non-auditory tissue of underwater boring blast of 150 kg of charge, are about 100 m and 300 m, respectively. Other three impulsive sounds also gives damage effects but less than that of underwater boring blast.

The Evaluation of Work Noise in Tunnel under Construction (터널 내 작업소음 평가)

  • Yun, Chang-Yeon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.3
    • /
    • pp.103-107
    • /
    • 2014
  • To assess a various of workplace noise environment in the tunnel construction site, the measurement is performed while tunnel constructing work. This study focuses on the sound attenuation according to the sound frequency characteristics and the distance from various works in the tunnel. Also, the noise distribution while blasting work is measured according to distance in this study. In addition, the boring processing, muck treatment, and tunnel lining by distance are measured for the noise distributions.

A Study on the Skin Friction Characteristics of SIP(Soil-cement Injected Precast Pile) (SIP 말뚝의 주면마찰 특성에 관한 연구)

  • 천병식;임해식;강재모;김도형;지원백
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.583-588
    • /
    • 2002
  • As environmental problem in course of construction has been a matter of interest, noise and vibration in the process of piling are considered as a serious problem. For this reason, the use of SIP method inserting pile as soon as boring and cement grouting is rapidly increasing for preventing vibration and noise. But a resonable bearing capacity formula for SIP method does not exit and even the standard specification for domestic condition isn't formed, though the lateral friction between cement paste and the ground does an important role and boring depth largely influences to the design bearing capacity, applying the SIP method . Therefore, the lateral friction was analyzed after the direct shear test worked with the lateral face of SIP and the soil.

  • PDF

Downward Method of H-PILE Alternative Materials of Percusion Rotary Drill (PRD시공시 H-PILE 대체 자재로 원가절감 할수 있는 공법 사례)

  • Lee, Wang-Hee;Lee, Il-Jae;Iim, Si-Nae
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.11a
    • /
    • pp.199-202
    • /
    • 2014
  • In recent years the downtown, Top-down method has been applied in a major method to solve the complaints due to noise, vibration, dust and safety issues such as cracking due to settlement when the excavation close to the building. Until it is installed underground permanent foundation, the Pre-founded Column is a pile foundation as well as a column to bear the upper construction load. The Pre-founded Column is constructed by PRD method generally. The EnP(Enlarging Pile) method can be expanded locally boring diameter of the embedment zone as compared to the PRD method existing general. Since the bearing capacity is increased by the boring diameter is expanded, the embedment length is reduced, the construction cost is reduced.

  • PDF

Prediction of Effect Zone for Marine Organisms Using Distance Attenuation Equations for Oceanic Noise (수중소음 거리감쇠 특성식을 이용한 해양생물 피해영향범위 예측)

  • Ha, Jeong-Min;Lee, Jong-Myeong;Lee, Jeong-Hoon;Gu, Dong-Sik;Choi, Byeong-Keun
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.14-19
    • /
    • 2012
  • There are insufficient data to consider the effect zone for the marine life of coastal fisheries, because no standard has been defined for the sound level of marine life. In this study, equations for distance attenuation were used to determine the effect zone for oceanic noises. A reference noise level was divided into 4 parts to consider the characteristics of the fishes, and the effect zone of each reference noise level was determined. To increase the reliability of the effect scope, approximately 100 repetitions of blasting work split into several parts by the boring depth, the sound level of the source caused by an increase in weight, and the effect zone were calculated using the prediction equation. According to the prediction, the maximum distance of the effect zone was 4.92 km.

Development of Thickness Measurement Method From Concrete Slab Using Ground Penetrating Radar (GPR 기반 콘크리트 슬래브 시공 두께 검측 기법 개발)

  • Lee, Taemin;Kang, Minju;Choi, Minseo;Jung, Sun-Eung;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.39-47
    • /
    • 2022
  • In this paper, we proposed a thickness measurement method of concrete slab using GPR, and the verification of the suggested algorithm was carried out through real-scale experiment. The thickness measurement algorithm developed in this study is to set the relative dielectric constant based on the unique shape of parabola, and time series data can be converted to thickness information. GPR scanning were conducted in four types of slab structure for noise reduction, including finishing mortar, autoclaved lightweight concrete, and noise damping layer. The thickness obtained by GPR was compared with Boring data, and the average error was 1.95 mm. In order to investigate the effect of finishing materials on the slab, additional three types of finishing materials were placed, and the following average error was 1.70 mm. In addition, sampling interval from device, the effect of radius on the shape of parabola, and Boring error were comprehensively discussed. Based on the experimental verification, GPR scanning and the suggested algorithm have a great potential that they can be applied to the thickness measurement of finishing mortar from concrete slab with high accuracy.

A Study on the Machining Accuracy according to Vibration and Unbalance Decrease in Rotational Speed Domains of High Precision Machine Tools (정밀 공작기계의 회전 영역별 진동 및 불평형량 감소에 따른 가공 정밀도 영향에 관한 연구)

  • Son, Deok-Soo;Kim, Sang-Hwa;Park, Il-Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.121-126
    • /
    • 2013
  • Precision machine tools for high dignity cutting are needed for efforts to improve machining accuracy. However, there are many factors to improve machining accuracy. This study investigated how machining accuracy changes when variation and unbalance amount in rotational speed domain is decreased. Machining accuracy of initial machine tools depends on manufacturing and assembly of parts such as bearing. And then, vibration and noise vary with volume of unbalance amount when it is rotation, so it effects unbalance amount. Also vibration and noise increased by unbalance shorten spindle's life and it especially makes worse boring accuracy. Therefore, this study studied the change of roundness and cylindricity of workpiece when it decreases variation and unbalance in rotational speed domain.

A Study on Development of PHC pile driving force increase device on soft ground (연약지반상 PHC파일 항타력 증대장치 개발에 관한연구)

  • Kim, Jong-Gil;Lee, Young-Joo
    • Journal of Digital Convergence
    • /
    • v.18 no.10
    • /
    • pp.219-224
    • /
    • 2020
  • The purpose of this study is to develop a device to replace the pre-boring method, which is generally constructed, to prevent pile damage caused by tension cracks that reason from tension waves generated during PHC pile construction on soft ground. Tension cracks are caused by tension waves from the hammer striking during the PHC pile hitting on the soft ground, which in turn leads to faulty construction. In order to prevent the occurrence of tension waves generated during driving, apply separate driving force increasing device to prevent the generation of tension waves, and pile damage as well. Also, it is an eco-friendly construction method that reduces smoke and noise by improving construction speed, reducing construction costs, and able to small equipment when developing equipment. This development equipment is a piece of effective equipment that can pioneer the Saemangeum reclamation area, the South-east Asian construction market, where the Deep soft ground is distributed.