• Title/Summary/Keyword: Boost DC-DC Converter

Search Result 705, Processing Time 0.044 seconds

Transformerless DGS Control using a Z-source Boost Inverter (Z-원 승압인버터를 이용한 변압기 없는 DGS제어)

  • Park Young-San
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1617-1624
    • /
    • 2006
  • This paper presents system modeling, modified space vector PWM implementation and design of a closed loop controller of the Z-source inverter which consists of L and C components and shoot-through zero vectors for DGS. Zero vector periods of SVPWM utilized to boost DC-link voltage instead of conventional DC/DC converter and transformer. Only two shoot-through vut(nn are used for DC link voltage control during one switching period without loss of non-zero vectors. Discrete time sliding mode controller, robust servomechanism controller are designed to realize fast and no-overshoot current response and a steady state voltage error. Simulation results are shows the effectiveness of the proposed algorithm.

Simulation of three Phase PWM Boost converter (단상제어형 3상 PWM 승압용 컨버터의 시뮬레이션)

  • Kang, W.J.;Kim, S.D.;Chun, J.H.;Lee, K.S.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2668-2670
    • /
    • 1999
  • In the past, the PWM converter had a large switching loss by hard switching and difficult to high frequency operation. The resonance converter to decrease the switching loss and EMI is required the frequency control and needed to reduce the voltage or current stress at each parts. So, this paper propose the 3-phase boost converter and the method to compensated input power factor by control the amplitude - an instantaneous value of the DC inductor current -and control the switching frequency that a modulation error by the ripple of the DC inductor current. The proposed 3-phase PWM boost converter of single phase control type can takes higher capacity and compensate the power factor by using Feed back controller at each phase for the existing 3-phase bridge rectifier type. Moreover the 3-phase full bridge type using the rectifier at each 3-phase circuit will be small size reactor and compensate input power factor by minimize harmonic components of each phase.

  • PDF

High Performance Charge Pump Converter with Integrated CMOS Feedback Circuit

  • Jeong, Hye-Im;Park, Jung-Woong;Choi, Ho-Yong;Kim, Nam-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.3
    • /
    • pp.139-143
    • /
    • 2014
  • In this paper, an integrated low-voltage control circuit is introduced for a charge pump DC-DC boost converter. By exploiting the advantage of the integration of the feedback control circuit within CMOS technology, the charge pump boost converter offers a low-current operation with small ripple voltage. The error amplifier, comparator, and oscillator in the control circuit are designed with the supply voltage of 3.3 V and the operating frequency of 1.6~5.5 MHz. The charge pump converter with the 4 or 8 pump stages is measured in simulation. The test in the $0.35{\mu}m$ CMOS process shows that the load current and ripple ratio are controlled under 1 mA and 2% respectively. The output-voltage is obtained from 4.8 ~ 8.5 V with the supply voltage of 3.3 V.

Switching Frequency Adjustment of Bidirectional Buck+Boost Converter for Increasing Output Power of a Battery Simulator for an Electric Vehicle (전기차용 배터리 시뮬레이터의 출력 향상을 위한 양방향 Buck+Boost 컨버터의 스위칭 주파수 변경)

  • Kim, Yoon-Jae;Nam, Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.133-134
    • /
    • 2015
  • 본 논문은 배터리 시뮬레이터용 양방향 DC-DC 컨버터에서 스위칭 주파수를 조절하여 넓은 출력 전압 범위에서 출력을 향상시킴을 보였다. 전 부하 영역에서 ZVS를 구현하였고, Psim 시뮬레이션을 통해 검증하였다.

  • PDF

A Study on the Power Conditioning System for the Fuel Cell Powered Off-Road Vehicle (연료전지를 이용하는 비도로용 자동차를 위한 전력변환시스템에 관한 연구)

  • Kang, Ho-Hyun;Kim, Wang-Rae;Choi, Woo-Jin;Jeon, Hee-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.343-346
    • /
    • 2005
  • In this paper a power conditioning system suitable for the fuel cell powered off-road vehicle is proposed. The proposed system employs a Proton Exchange Membrane Fuel Cell stack combined with boost converter, a super capacitor module combined with hi-directional buck-boost converter, a 4-quadrant DC chopper and a permanent magnet DC motor. The momentary overload condition occurring during the motor starting is handled by the energy stored in the supercapacitor module. Also, the regenerative energy can be stored in the supercapacitor module by operating the system in either buck or boost mode. This capability gives the system designer the higher flexibility in designing the system and assures the lower cost of the system. The validity and feasibility of the proposed system is proven by the computer simulation.

  • PDF

Energy Regenerative 3-Phase Bidirectional AC-DC Converter for the Secondary Battery Charge/Discharge System (에너지 회수가 가능한 2차전지 충방전시스템용 3상 양방향 AC-DC 컨버터)

  • Lim, Seung-Beom;Won, Hwa-Young;Chae, Soo-Yong;Seo, Young-Min;Lee, Jun-Young;Ko, Jong-Sun;Hong, Soon-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.259-261
    • /
    • 2008
  • The electronic products such as laptop PC, cellular phone, robots and etc. need the DC power source. Recently, the secondary battery is frequently used as the portable DC power source and it needs forming process. In this paper, we proposed the bidirectional converter that the battery can be charged with high power factor and the discharged energy is regenerated into AC power source. In the charging mode, the converter acts as the boost rectifier. And the AC input current is controlled in phase with the AC input voltage. As a result, the power factor is improved nearly to unity. In the discharging mode, the DC power of battery wasted in resistor is regenerated to the AC bus line. Finally, the validity of the proposed bidirectional converter is verified by computer simulations and experimentation.

  • PDF

Design of PFM Boost Converter with Dual Pulse Width Control (이중 펄스 폭을 적용한 PFM 부스트 변환기 설계)

  • Choi, Ji-San;Jo, Yong-Min;Lee, Tae-Heon;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1693-1698
    • /
    • 2015
  • This paper proposed a PFM(pulse-frequency modulator) boost converter which has dual pulse-width. The PFM boost converter is composed of BGR(band gap voltage reference generating circuit), voltage reference generating circuit, soft-start circuit, error amplifier, high-speed comparator, inductor current sensing circuit and pulse-width generator. Converter has different inductor peak current so it has wider load current range and smaller output voltage ripple. Proposed PFM boost converter generates 18V output voltage with input voltage of 3.7V and it has load current range of 0.1~300mA. Simulation results show 0.43% output voltage ripple at ligh load mode and 0.79% output voltage ripple at heavy load mode. Converter has efficiency 85% at light lode mode and it has maximum 86.4% at 20mA load current.

A Study On High Power Factor Sine Pulse Type Power Supply For Atmospheric Pressure Plasma Cleaning System with 3-Phase PFC Boost Converter (3상 PFC 부스트 컨버터를 채용한 상압플라즈마 세정기용 고역률 정형파 펄스 출력형 전원장치에 관한 연구)

  • Han, Hee-Min;Kim, Min-Young;Seo, Kwang-Duk;Kim, Joohn-Sheok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.72-81
    • /
    • 2009
  • This paper presents quasi-resonant type high power factor ac power supply for atmospheric pressure plasma cleaning system adopting three phase PFC boost converter and it's control method. The presented ac power supply consists of single phase H-bridge inverter, step-up transformer for generating high voltage and three phase PFC boost converter for high power factor on source utility. Unlikely to the traditional LC resonant converter, the propose one has an inductor inside only. A single resonant takes place through the inside inductor and the capacitor from the plasma load modeled into two series capacitor and one resistance. The quasi-resonant can be achieved by cutting the switching signal when the load current decrease to zero. To obtain power control ability, the propose converter controlled by two control schemes. One is the changing output pulse period scheme in the manner of PFM(Pulse Frequency Modulation) control. On the other, to provide more higher power to load, the DC rail voltage is directly controlled by the 3-phase PFC boost converter. The significant merits of the proposed converter are the uniform power providing capability for high quality plasma generation and low reactive power in AC and DC side. The proposed work is verified through digital simulation and experimental implementation.

Optimized DC-DC Converter in Gate Drive for EV Inverter (전기 자동차 인버터 구동을 위한 게이트 드라이버용 DC-DC 컨버터)

  • Shin, Seung-Min;Ryu, Seung-Hee;Lee, Byoung-Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.153-154
    • /
    • 2013
  • 본 논문에서는 Boost 컨버터와 Push-pull 컨버터로 구성되어 가격 경쟁력 향상 및 안정적으로 출력 전압 제어가 가능한 게이트 드라이버용 DC-DC 컨버터를 제안한다. 제안된 DC-DC 컨버터는 항상 최상의 성능으로 동작하는 전기 자동차용 인버터를 구현하기 위해 전기 자동차의 열악한 동작 환경에 상관없이 안정적인 On/Off 전압을 공급한다. 제안된 DC-DC 컨버터는 80kW 전기 자동차 개발을 위해 제작된 인버터를 통하여 성능을 검증하였다.

  • PDF

Isolated bidirectional DC-DC Converter for low voltage battery charger (저전압 배터리 충전용 절연형 양방향 DC-DC 컨버터)

  • Jeong, Dong-Keun;Ryu, Myung-Hyo;Baek, Joo-Won;Kim, Hee-Je
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.198-199
    • /
    • 2013
  • 본 논문은 군용 UPS 시스템에서 Dual Active Bridge(DAB) 컨버터를 이용한 절연형 양방향 배터리 충전기를 제안한다. 일반적인 군용 UPS 시스템은 AC-DC 정류기, DC-AC 인버터, 양방향 DC-DC 컨버터, 배터리 충전기, 배터리로 구성되며, 여러 부하상태들에 대한 지속적인 전력공급을 위하여 안정적인 에너지 저장 시스템이 요구된다. 다양한 양방향 DC-DC 컨버터들 중, DAB 컨버터는 buck, boost 동작이 가능한 고효율 절연형 양방향 컨버터이다. 본 논문에서는 6kW(입력 380Vdc, 출력 32/21Vdc) DAB 컨버터에 대한 토폴로지 분석하고, 파라미터 및 제어 알고리즘 설계를 제안하고 시제품을 통해 이를 검증하였다.

  • PDF