• Title/Summary/Keyword: Boost DC-DC Converter

Search Result 705, Processing Time 0.025 seconds

Analysis and Design of Function Decoupling High Voltage Gain DC/DC Converter

  • Wei, Yuqi;Luo, Quanming;Lv, Xingyu;Sun, Pengju;Du, Xiong
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.380-393
    • /
    • 2019
  • Traditional boost converters have difficulty realizing high efficiency and high voltage gain conversion due to 1) extremely large duty cycles, 2) high voltage and current stresses on devices, and 3) low conversion efficiency. Therefore, a function decoupling high voltage gain DC/DC converter composed of a DC transformer (DCX) and an auxiliary converter is proposed. The role of DCX is to realize fixed gain conversion with high efficiency, whereas the role of the auxiliary converter is to regulate the output voltage. In this study, different forms of combined high voltage gain converters are compared and analyzed, and a structure is selected for the function decoupling high voltage gain converter. Then, topologies and control strategies for the DCX and auxiliary converter are discussed. On the basis of the discussion, an optimal design method for circuit parameters is proposed, and design procedures for the DCX are described in detail. Finally, a 400 W experimental prototype based on the proposed optimal design method is built to verify the accuracy of the theoretical analysis. The measured maximum conversion efficiency at rated power is 95.56%.

THREE PHASE PWM AC-DC BOOST CONVERTER WITH UNITY POWER FACTOR (단위 역률로 동작하는 3상 PWM AC-DC BOOST콘버어터에 관한 연구)

  • Chun, Chang-Gun;Park, Sung-Jun;Kwon, Soon-Jae;Kim, Chul-U
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.397-399
    • /
    • 1994
  • In this parer, the development of input power factor and the harmonic distortion of line current were showed in the proposed three phase AC-DC converter. We identified that DC voltage in the output terminal has fast dynamic response and has nearly ripple. Moreover, the converter also possesses the regenerative capability which is useful for many applications. The switching frequency of this converter operated with constant in the range of 2KHZ. Finally, simulation and experiment results are presented.

  • PDF

Power Factor Correction of the Single-State AC/DC Converter with Low conduction Loss and High Efficiency

  • Ryu, Myung-Hyo;Choi, Byungcho;Kim, Heung-Geun;Cha, Young-Kil
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.281-286
    • /
    • 1998
  • This paper proposes a new single-stage, single-switch AC/DC converter based on the boost power factor correction (PFC) cell. The converter offers both high power factor and high efficiency. To reduce the dc voltage on the energy storage capacitor, the dc bus voltage feedback method was used. A 100W (5V/20A) prototype was built and tested to show the validity of the proposed converter.

  • PDF

Low voltage DC-to-DC converter integrating boost converter into forward converter for charging auxiliary battery in hybrid electric vehicle (부스트컨버터와 포워드컨버터의 결합을 이용한 하이브리드 전기자동차의 보조배터리 충전용 저전압 직류 변환장치)

  • Lee, Ju-Young;Kim, Seong-Hye;Kang, Feel-soon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.136-137
    • /
    • 2012
  • 본 논문에서는 하이브리드 전기자동차의 전장시스템 에너지 공급을 위한 보조배터리 충전용 저전압 직류 변환장치(Low voltage DC-to-DC Converter, LDC)를 제안한다. 차량 탑재용의 특성상 소형 경량화 설계 기술을 통한 연비증가, 동력성능의 향상이 매우 중요하다. 본 논문에서 제안하는 LDC는 부스트와 포워드 컨버터 구조를 혼합한 형태로 부스트 컨버터의 입력 인덕터를 변압기로 대체하여 포워드 컨버터와 결합시킴으로서 출력전압의 승 강압 동작을 구현한다. 따라서 차량 시동 시 내연기관을 구동하기 위한 승압모드로 동작하고, 그 외 일반적인 경우는 차량 내 각종 전장부하에 전력을 공급하기 위한 강압모드로 동작된다. 제안된 컨버터의 동작 모드에 따른 이론적 분석을 시행하고 PSIM을 이용한 시뮬레이션을 통해 타당성을 검증한다.

  • PDF

A New Modular 3-Phase AC-DC Flyback Converter for Telecommunication (새로운 통신전원용 3상 AC-DC Flyback 컨버터 모듈)

  • Lee, J.P.;Choi, J.Y.;Yoon, T.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.109-111
    • /
    • 1998
  • A novel mode of parallel operation of 3-phase AC-DC flyback converter for power factor correction along with tight regulation was recently analyzed and presented. The advantage of the proposed converter does not require expensive high voltage and high current devices that are normally needed in popular boost type 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included to confirm the validity of the analysis.

  • PDF

Power factor correction of the three phase boost converter using space vector PWM strategy (공간 벡터 PWM 법을 적용한 3상 boost 콘버터의 역률개선)

  • 백종현;홍성태;배상준;배영호;권순결
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.2
    • /
    • pp.104-111
    • /
    • 1997
  • In this paper, three-phase PWM AC to DC boost converter that operates with unity power factor and sinusodial input line currents is presented. The current control of this converter is based on the space vector PWM strategy with fixed switching frequency and the line currents track to reference currents within one sampling time interval. By using this control strategy low ripples in the outut current and the voltage as well as fast dynamic response are achieved with small dc link cpacitance employed.

  • PDF

Compare of buck-boost converter and Boost converter using the IC MPPT method Efficiency (IC MPPT 방법을 이용한 벅-부스트 컨버터와 부스트 컨버터의 효율분석 및 비교)

  • Kim, Yu-Tak;Ko, Jae-Sub;Seo, Tae-Young;Kang, Sung-Min;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.952-953
    • /
    • 2015
  • In this paper, various MPPT control in the most simple and widely used method of IC using the method According to the type of DC-DC converter to analyze the efficiency buck-boost convertor, Cuk convertor using each efficiency was analyzed.

  • PDF

Reduction of Conducted EMI Noise in Boost Converter using Sigma-Delta Modulation Technique (Sigma-Delta 변조기법을 이용한 Boost Converter의 전도 노이즈 저감)

  • Lee Sung-Hee;Choi Tae-Young;Gu Ja-sung;Won Chung-Yuen;Kim Gyu-Sik;Choi Se-Wan
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.494-497
    • /
    • 2002
  • Conducted electromagnetic interference (EMI) from switch mode power supplies (SMPS) has become a major problem due to the proliferation of these devices employing dc-dc converters using standard pulse width modulation (PWM). In this paper, we proposed the sigma-delta modulation $({\sum}{\Delta}M)$ as an alternative switching technique to reduce the conducted EMI in SMPS. A comparative investigation on conducted EMI generated by PWM and ${\sum}{\Delta}M$ techniques are experimentally performed on a 300W Boost converter.

  • PDF

Transient Current Suppression Scheme for Bi-Directional DC/DC Converters in 42V Automotive Power Systems

  • Lee, Woo-Cheol;Yoo, Chang-Gyu;Lee, Kyu-Chan;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.517-525
    • /
    • 2009
  • 42V electrical power systems are on their way to replacing the present l4V systems in automobiles and 42V/14V dual voltage systems have been proposed to provide backward compatibility with the existing components for the 14V systems. A synchronous buck/boost converter is an attractive topology for 42V/14V dual voltage systems since it offers the possibility of bi-directional operation without additional components. In this paper, transient currents generated during converter startup or changes in operation modes between buck and boost are analyzed and a cost effective solution to remove the transient currents is proposed. The validity of the proposed control strategy is investigated through simulation and experiment with bi-directional converters.

PSO-Based Nonlinear PI-type Controller Design for Boost Converter

  • Seo, Sang-Wha;Kim, Yong;Choi, Han Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.211-219
    • /
    • 2018
  • This paper designs a nonlinear PI-type controller for the robust control of a boost DC-DC converter using a particle swarm optimization (PSO) algorithm. Based on the common knowledge that the transient responses can be improved if the P and I gains increase when the transient error is big, a nonlinear PI-type control design method is developed. A design procedure to autotune the nonlinear P and I gains is given based on a PSO algorithm. The proposed nonlinear PI-type controller is implemented in real time on a Texas Instruments TMS320F28335 floating-point DSP. Simulation and experimental results are given to demonstrate the effectiveness and practicality of the proposed method.