• Title/Summary/Keyword: Boost DC-DC Converter

Search Result 705, Processing Time 0.04 seconds

Fault Diagnosis of DC-DC Boost Converter (DC-DC 부스트 컨버터 고장 진단 알고리즘)

  • Cho, Hyun-ki;Kwak, Sang-shin
    • Proceedings of the KIPE Conference
    • /
    • 2012.11a
    • /
    • pp.123-124
    • /
    • 2012
  • 최근, 높은 신뢰성을 갖는 전원공급 시스템의 중요성이 부각되면서 컨버터 내 고장을 빠르게 진단할 수 있는 기능이 필요하게 되었다. 본 논문은 DC-DC 부스트 컨버터 스위치의 개방형 고장 및 단락형 고장 발생 시, 인덕터의 전압을 통해 고장 여부를 검출하는 동시에 고장 종류를 진단할 수 있는 알고리즘을 제안한다.

  • PDF

Improved Power Quality IHQRR-BIFRED Converter Fed BLDC Motor Drive

  • Singh, Bhim;Bist, Vashist
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.256-263
    • /
    • 2013
  • This paper presents an IHQRR (Integrated High Quality Rectifier Regulator) BIFRED (Boost Integrated Flyback Rectifier Energy Storage DC-DC) converter fed BLDC (Brushless DC) motor drive. A reduced sensor topology is derived by utilizing a BIFRED converter to operate in a dual DCM (Discontinuous Conduction Mode) thus utilizing a voltage follower approach for the PFC (Power Factor Correction) and voltage control. A new approach for speed control is proposed using a single voltage sensor. The speed of the BLDC motor drive is controlled by varying the DC link voltage of the front end converter. Moreover, fundamental frequency switching of the VSI's (Voltage Source Inverter) switches is used for the electronic commutation of the BLDC motor which reduces the switching losses in the VSI. The proposed drive is designed for a wide range of speed control with an improved power quality at the AC mains which falls within the recommended limits imposed by international power quality standards such as IEC 61000-3-2.

Design and verification of Bi-Directional Inverter and Converter using Zinc-Bromine Flow Battery (Zinc - Bromine 플로우 배터리를 이용한 양방향 인버터 및 DC-DC 컨버터 설계 및 실증)

  • Lee, SeungJun;Cho, Younghoon;Lim, Jong-ung;Choe, Gyu-ha
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.389-390
    • /
    • 2015
  • This paper proposes renewable energy system related with flow battery system which is divided into two system, converter and inverter. The Interleaved Boost Converter circuit was used for DC - DC Converter and Full-Bridge Inverter was used for Grid connected Inverter. This paper design each system and uses methods to operate converter and inverter in high efficiency.

  • PDF

Topologies of hige freguency PWM DC-DC converter using a new active snubber (새로운 액티브 스너버를 이용한 고주파 PWM DC-DC 컨버터의 토플로지)

  • Cho, M.C.;Kim, C.Y.;Suh, K.Y.;Lee, H.W.;Kwon, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1010-1011
    • /
    • 2006
  • A new soft switched active snubber circuit is proposed to achieve zero voltage and zero current switching for all the switching devices in PWM DC-DC converters. The unique location of the snubber capacitor and inductor ensures low current/voltage stresses and commutation losses. With a saturable reactor, the conduction loss of the auxiliary switch could be further minimized. A boost converter adopting this technique is presented as an example, to illuminate its operation principles and derive the design procedures. Simulation and hardware implementation have been made to validate its performance. Some other basic PWM DC-DC topologies using the proposed snubber have also been given.

  • PDF

New ZVZCS PWM DC-DC Converters with One Auxiliary Swithch (단일 보조 스위치를 이용한 새로운 ZVZCS PWM DC-DC 컨버터)

  • Ryu, Seung-Hui;Lee, Dong-Yun;Yu, Sang-Bong;Hyeon, Dong-Seok
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.188-194
    • /
    • 2000
  • This paper presents new Zero-Voltage-/Zero-Current-Switching (ZVZCS) PWM DC-DC converters. The proposed soft-switching technique achieves ZVS and ZCS simultaneously at both turn-on and turn-off of the main switch and diode by using only one auxiliary switch. Also, the proposed soft-switching technique is suitable for not only minority but also majority carrier semiconductor devices. The auxiliary circuit of the proposed topology is placed out the main power path and therefore, there are no voltage/current stresses on the main switch and diode. The operating principle of the proposed topology is illustrated by a detailed study with a boost converter as an example. Theoretical analysis, simulation and experimental results are presented to explain the proposed schemes.

  • PDF

A Conduction Band Control AC-DC Buck Converter for a High Efficiency and High Power Density Adapter (고효율, 고전력밀도 아답터를 위한 도통밴드 제어 AC-DC 벅 컨버터)

  • Moon, SangCheol;Chung, Bonggeun;Koo, Gwanbon
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.38-39
    • /
    • 2017
  • This paper proposes a new control method for an AC-DC Buck converter which is utilized as a front-end converter of a 2-stage high power density adapter. In the conventional adapter applications, 2-stage configuration shows higher power transfer efficiency and higher power density than those of the single stage flyback converter. In the 2-stage AC-DC converter, the boost converter is widely used as a front-end converter. However, an efficiency variation between high AC line and low AC line is large. On the other hand, the proposed conduction band control method for a buck front-end converter has an advantage of small efficiency variation. In the proposed control method, switching operation is determined by a band control voltage which represents output load condition, and an AC line voltage. If the output load increasesin low AC line, the switching operation range is expanded in half of line cycle. On the contrary, in light load and high line condition, the switching operation is narrowed. Thus, the proposed control method reduces switching loss under high AC line and light load condition. A 60W prototype which is configured the buck and LLC converter with the proposed control method is experimented on to verify the validity of the proposed system. The prototype shows 92.16% of AC-DC overall efficiency and 20.19 W/in 3 of power density.

  • PDF

A New Modular 3-phase AC-DC Flyback Converter for Telecommunication (새로운 통신전원용 3상 AC-DC Flyback 컨버터)

  • Lee, Jong-Pil;Choi, Ju-Yeop;Song, Joong-Ho;Choy, Ick;Kim, Taek-Yong;Yoon, Tae-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.159-165
    • /
    • 1999
  • Three-phase AC-DC flyback converter with high power factor correction and tight regulation is presented in this p paper. The advantage of the proposed converter does not require expensive high voltage and high cun‘ent devices that a are normally needed in popular boost type 3-phase converter. In this paper the detailed small signal analysis of the m modular 3-phase AC-DC flyback converter is provided for control purposes and also experimental results are included t to confirm the validity of the analysis.

  • PDF

Three-Port Converters with a Flexible Power Flow for Integrating PV and Energy Storage into a DC Bus

  • Cheng, Tian;Lu, Dylan Dah-Chuan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1433-1444
    • /
    • 2017
  • A family of non-isolated DC-DC three-port converters (TPCs) that allows for a more flexible power flow among a renewable energy source, an energy storage device and a current-reversible DC bus is introduced. Most of the reported non-isolated topologies in this area consider only a power consuming load. However, for applications such as hybrid-electric vehicle braking systems and DC microgrids, the load power generating capability should also be considered. The proposed three-port family consists of one unidirectional port and two bi-directional ports. Hence, they are well-suited for photovoltaic (PV)-battery-DC bus systems from the power flow viewpoint. Three-port converters are derived by combining different commonly known power converters in an integrated manner while considering the voltage polarity, voltage levels among the ports and the overall voltage conversion ratio. The derived converter topologies are able to allow for seven different modes of operation among the sources and load. A three-port converter which integrates a boost converter with a buck converter is used as a design example. Extensions of these topologies by combining the soft-switching technique with the proposed design example are also presented. Experiment results are given to verify the proposed three-port converter family and its analysis.

Comparative Study between Two-loop and Single-loop Control of DC/DC Converter for PVPCS (PVPCS DC/DC 컨버터 모델링 및 2중 루프 제어와 단일 루프 제어의 특성 비교)

  • Kim, Dong-Hwan;Jung, Seung-Hwan;Song, Seung-Ho;Choi, Ju-Yeop;Choi, Ick;An, Jin-Ung;Lee, Sang-Chul;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.spc3
    • /
    • pp.245-254
    • /
    • 2012
  • In photovoltaic system, the characteristics of photovoltaic module such as open circuit voltage and short circuit current will be changed because of cell temperature and solar radiation. Therefore, the boost converter of a PV system connects between the output of photovoltaic system and DC link capacitor of grid connected inverter as controlling duty ratio for maximum power point tracking(MPPT). This paper shows the dynamic characteristics of the boost converter by comparing single-loop and two-loop control algorithm using both analog and digital control. Both proposed compensation methods have been verified with computer simulation to demonstrate the validity of the proposed control schemes.

Boost Type ZVS-PWM Chopper-Fed DC-DC Power Converter with Load-Side Auxiliary Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.147-154
    • /
    • 2003
  • This paper presents a high-frequency boost type ZVS-PWM chopper-fed DC-DC power converter with a single active auxiliary edge-resonant snubber at the load stage which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of boost type ZVS-PWM chopper proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory and the temperature performance of IGBT module, the actual power conversion efficiency, and the EMI of radiated and conducted emissions, and then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn-off mode transition with the aid of an additional lossless clamping diode loop, and can be reduced the EMI conducted emission.