• Title/Summary/Keyword: Bone matrix

Search Result 542, Processing Time 0.03 seconds

A Study on the Hydroxyapatite-Zirconia Composite Bioceramics (Hydroxyapatite Zirconia 계 복합 Bioceramics에 관한 연구)

  • 이종필;최현국;송종택;최상흘
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.4
    • /
    • pp.289-296
    • /
    • 1991
  • Hydroxyapatite (HAp)-zirconia bioceramics, which have excellent biocompatibility with tissue of bone and tooth and good mechanical properties, were synthesized, and their properties and biocompatibility were investigated. HAp powders were synthesized with Ca/P=1.67 and pH 11 by precipitation method. A fine spherical monodispersed ZrO2 powders were prepared by metal alkoxide method, and then they were partially stabilized with 10 mol% CaO by solid state reaction at 1300℃. HAp-zirconia composites were prepared by sintering of these HAp mixed with various amount CaO-partially stabillized zirconia (PSZ). When HAp containing 15 wt% PSZ with 10 mol% CaO (PSZ(10C)) were sintered at 1250℃, it was prevented to decompose into TCP and ZrO2 was uniformly dispersed at HAp matrix. Mechanical strength of these sintered bodies were increased by addition of 15 wt% PSZ(10C), the bending strength of compacts fired at 1250℃ was 165 MPa. HAp-PSZ composites chemically bonded each other in Ringer's solution and the component of bonded layer was HAp. These composites did not prevent cell-growing and exhibit any cytotoxic effects.

  • PDF

Effect of Methylprednisolone on the Healing Process after $Medpor^{(R)}$ Implantation in Rats (Medpor 매식후 치유과정에서 Methylprednisolone이 미치는 영향)

  • Kim, Su-Gwan;Chung, Sung-Su
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.22 no.2
    • /
    • pp.142-154
    • /
    • 2000
  • The purpose of this study is to evaluate the difference in healing of $Medpor^{(R)}$ implants of two different thickness (1.5mm and 4.5mm) and the effects of methylprednisolone on the healing process. Light microscopic and scanning electron microscopic examinations, and hardness measurement were made in 100 rats 2, 4, or 8 weeks postoperatively. The 1.5mm thin implants were taken better than the 4.5mm thick implants. The inflammatory responses were reduced after application of methylprednisolone with arrangement and amount of bone matrix deposited being more irregular and reduced in bulk than in the control group. To hasten postoperative healing after $Medpor^{(R)}$ implantation, the thinner material should be used and steroid injection should be avoided.

  • PDF

BMD Analysis according to the Obesity Index in a Group of Adults (비만도에 따른 성인들의 집단별 골밀도 분석)

  • Kim, Sun-Geun;Kweon, Dae-Cheol;Oh, Chan-Ho;Song, Woon-Heung
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.1
    • /
    • pp.51-58
    • /
    • 2008
  • Obesity which causing many physical and psychological problems is difficult to treatment. The purpose study was investigate relationships between weight, height, body mass index (BMI) and BMD of according to the low, normal, over, obesity, high group. According to obesity index, each group was divided into five proup. Study subjects were man(n=135) and woman(n=145). We checked the BMD of femoral neck and lumbar spine by using dual energy X-ray bone densitometry. Weight was positively correlation with height (p<0.05) by Pearson's correlation matrix. There was a significant difference in BMD of femoral neck and lumbar spine between four(low, normal, over, obesity) groups except for high obesity groul.

  • PDF

Basic Science of the Articular Cartilage (관절 연골에 대한 기초 과학)

  • Kim, Jae-Hwa;Ahn, Chang-Soo
    • Journal of the Korean Arthroscopy Society
    • /
    • v.13 no.3
    • /
    • pp.189-192
    • /
    • 2009
  • Although the articular cartilage is only a few milimiters thick, it has surprising stiffness to compression, exceptional ability to distribute load minimizing peak stress on subchondral bone and great durability. In many instances, it help to preserve normal joint function for more than 80 years. Varying in thickness, cell density, matrix composition, mechanical properties even within the same joint, it provides low-friction and pain free-motion. However, it lacks a blood or lymphatic supply and neurological elements are absent. It shows limited healing potential because of poor regenerative capacity.

  • PDF

Biomaterials-assisted spheroid engineering for regenerative therapy

  • Lee, Na-Hyun;Bayaraa, Oyunchimeg;Zechu, Zhou;Kim, Hye Sung
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.356-367
    • /
    • 2021
  • Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.

Biocompatible polymeric rods as implants for enhanced cartilage regeneration

  • Yook , Yeo-Joo;Hwang, Jeong-Hyo;Shim, In-Kyung;Lee, Jue-Yeon;Lee, Sang-Young;Ahn, Hyun-Jeong;Lee, Sang-Hoon;Lee, Myung-Chul;Lee, Seung-Jin
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.235.1-235.1
    • /
    • 2003
  • With an aim of obtaining high efficacy in cartilage regeneration, implantable polymeric rods were fabricated. These rod-type matrices were anticipated to perform structural tissue supporting activity and enhance extracellular matrix (ECM) formation by releasing specific agent, DHEA-S, in controlled manner. It is expected that application for the drilling operation on the articular cartilage of OA patients as the implants may promote regeneration of their cartilage. Osteoarthritis (OA) is a degenerative joint disease characterized by progressive loss of articular cartilage, subchondral bone remodeling, spur formation, and synovial inflammation. (omitted)

  • PDF

Dental Properties of Hydroxyapatite Filled Polymer Composite (수산화인회석이 충전된 고분자 복합체의 치과적 물성)

  • Seo, Kitaek;Yoon, Jingu;Kim, Juhwan;Kim, Ohyoung
    • Applied Chemistry
    • /
    • v.9 no.2
    • /
    • pp.25-28
    • /
    • 2005
  • To evaluate the dental restorative application of polymer composites filled with hydroxyapatite (HAP) which is an inorganic component of human bone material, dental properties of the polymer composites were investigated. A visible light system was utilized to activate the acrylate resin matrix of the composites. Maximum loading percentage of HAP in composite was 65 wt% and the depth of cure was 6.0 mm which can be applicable for dental restoration. With increasing the HAP content, degree of conversion of polymer composites was slightly decreased, however, polymerization shrinkage value was not varied. Diametral tensile strength value was enhanced with an increase of HAP content, however, there was no strict trend between flexural strength and HAP concentration. Anyhow, polymer composites prepared herein have superior mechanical properties sufficient specifications applicable to dental materials.

Reconstruction of Collagen Using Tensor-Voting & Graph-Cuts

  • Park, Doyoung
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.1
    • /
    • pp.89-102
    • /
    • 2019
  • Collagen can be used in building artificial skin replacements for treatment of burns and towards the reconstruction of bone as well as researching cell behavior and cellular interaction. The strength of collagen in connective tissue rests on the characteristics of collagen fibers. 3D confocal imaging of collagen fibers enables the characterization of their spatial distribution as related to their function. However, the image stacks acquired with confocal laser-scanning microscope does not clearly show the collagen architecture in 3D. Therefore, we developed a new method to reconstruct, visualize and characterize collagen fibers from fluorescence confocal images. First, we exploit the tensor voting framework to extract sparse reliable information about collagen structure in a 3D image and therefore denoise and filter the acquired image stack. We then propose to segment the collagen fibers by defining an energy term based on the Hessian matrix. This energy term is minimized by a min cut-max flow algorithm that allows adaptive regularization. We demonstrate the efficacy of our methods by visualizing reconstructed collagen from specific 3D image stack.

Biomedical Application of Silk Sericin: Recent Research Trend

  • Seong-Gon Kim;Je-Yong Choi;HaeYong Kweon
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • Silk sericin, a natural protein from silkworm cocoons, is emerging as a multifunctional biomaterial in biomedicine, particularly in tissue engineering and wound healing. Recent studies have highlighted its biocompatibility, biodegradability, and potential for chemical modification, which allows it to be incorporated into various scaffold architectures. This review article synthesizes current research, including the development of sericin-based hydrogel scaffolds for tissue engineering and sericin's role in enhancing wound healing. Key findings demonstrate sericin's ability to refine scaffold porosity and mechanical strength, expedite tissue healing, and reduce bacterial load in wounds. The integration of sericin into novel bioactive dressings and its use in peripheral nerve injury repair are also discussed, showcasing its adaptability and efficacy. The convergence of these studies illustrates the broad applications of sericin, from scaffold design to clinical interventions, making it a promising material in regenerative medicine and tissue engineering, with the potential to improve patient outcomes significantly.

The Effect of Collagen Coating in Crystallized Hydroxyapatite Scaffold (콜라겐 코팅된 결정화 하이드록시아파타이트 담체를 이용한 골아세포의 성장)

  • Kim, Tae-Gon;Park, Won-Yong;Kim, Yong-Ha;Kim, Youn-Jung;Choi, Sik-Young
    • Archives of Plastic Surgery
    • /
    • v.36 no.3
    • /
    • pp.247-253
    • /
    • 2009
  • Purpose: Hydroxyapatite(HA) has been widely used due to its chemical similarity to bone and good biocompatibility. HA is composed of macropores and micropores. Too much irregularities of the micropores are ineffective against the adhesion and proliferation of osteoblast. Many efforts have been tried to overcome these drawbacks. HA crystal coating on the irregular surface of HA scaffold, crystallized HA, is one of the method to improve cell adhesion. Meanwhile, the collagen has been incorporated with HA to create composite scaffold that chemically resembles the natural extracellular matrix components of bone. The authors proposed to examine the effect of collagen - coated crystallized HA on the adhesion and proliferation of osteoblast. Method: HA powder containing $10{\mu}m$ pore size was manufactured as 1 cm pellet size. For the making crystallized HA, 0.1 M EDTA solution was used to dissolve HA powder and heated $100^{\circ}C$ for 48 hours. Next, the crystallized HA pellets were coated with collagen (0.1, 0.5, and 1%). The osteoblasts were seeded into HA pellets and incubated for the various times (1, 5, and 9 days). After the indicating days, methylthiazol tetrazolium (MTT) assay was performed for cell proliferation and alkaline phosphatase (ALP) activty was measured for bone formation. Result: In SEM study, the surface of crystallized HA pellet was more regular than HA pellet. MTT assay showed that the proliferation of osteoblasts increased in a collagen dose - dependent and time - dependent manner and had a maximum effect at 1% collagen concentration. ALP activity also increased in a collagen dose - dependent manner and had a highest effect at 1% collagen concentration. Conclusion: These data showed that crystallization and collagen coating of HA was effective for osteoblast proliferation and ALP activity. Therefore, our results suggest that crystallized - HA scaffold with collagen coating is may be a good strategy for tissue engineering application for bone formation.