• Title/Summary/Keyword: Bone graft material

Search Result 314, Processing Time 0.032 seconds

Mechanical and Biological Characteristics of Reinforced 3D Printing Filament Composites with Agricultural By-product

  • Kim, Hye-Been;Seo, Yu-Ri;Chang, Kyeong-Je;Park, Sang-Bae;Seonwoo, Hoon;Kim, Jin-Woo;Kim, Jangho;Lim, Ki-Taek
    • Food Engineering Progress
    • /
    • v.21 no.3
    • /
    • pp.233-241
    • /
    • 2017
  • Scaffolds of cell substrates are biophysical platforms for cell attachment, proliferation, and differentiation. They ultimately play a leading-edge role in the regeneration of tissues. Recent studies have shown the potential of bioactive scaffolds (i.e., osteo-inductive) through 3D printing. In this study, rice bran-derived biocomposite was fabricated for fused deposition modeling (FDM)-based 3D printing as a potential bone-graft analogue. Rice bran by-product was blended with poly caprolactone (PCL), a synthetic commercial biodegradable polymer. An extruder with extrusion process molding was adopted to manufacture the newly blended "green material." Processing conditions affected the performance of these blends. Bio-filament composite was characterized using field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Mechanical characterization of bio-filament composite was carried out to determine stress-strain and compressive strength. Biological behaviors of bio-filament composites were also investigated by assessing cell cytotoxicity and water contact angle. EDX results of bio-filament composites indicated the presence of organic compounds. These bio-filament composites were found to have higher tensile strength than conventional PCL filament. They exhibited positive response in cytotoxicity. Biological analysis revealed better compatibility of r-PCL with rice bran. Such rice bran blended bio-filament composite was found to have higher elongation and strength compared to control PCL.

Effectiveness of porcine-derived xenograft with enamel matrix derivative for periodontal regenerative treatment of intrabony defects associated with a fixed dental prosthesis: a 2-year follow-up retrospective study

  • Kim, Yeon-Tae;Jeong, Seong-Nyum;Lee, Jae-Hong
    • Journal of Periodontal and Implant Science
    • /
    • v.51 no.3
    • /
    • pp.179-188
    • /
    • 2021
  • Purpose: Due to the difficulty of the hygienic care and sanitary management of abutment teeth and subpontic areas associated with fixed dental prostheses (FDPs), intrabony defects occur and accelerate due to the accumulation of plaque and calculus. This study aimed to evaluate the efficacy of regenerative periodontal surgery for intrabony defects associated with FDPs. Methods: The study inclusion criteria were met by 60 patients who underwent regenerative treatment between 2016 and 2018, involving a total of 82 intrabony defects associated with FDPs. Periodontal osseous lesions were classified as 1-, 2-, and 3-wall intrabony defects and were treated with an enamel matrix derivative in combination with bone graft material. The changes in clinical (pocket probing depth [PPD] and clinical attachment level [CAL]) and radiographic (defect depth and width) outcomes were measured at baseline and at 6, 12, and 24 months. Results: Six months after regenerative treatment, a significant reduction was observed in the PPD of 1-wall (P<0.001), 2-wall (P<0.001), and 3-wall (P<0.001) defects, as well as a significant reduction in the CAL of 2-wall (P<0.001) and 3-wall (P<0.001) intrabony defects. However, there was a significant increase in the CAL of 1-wall intrabony defects (P=0.003). Radiographically, a significant reduction in the depth of the 3-wall (P<0.001) defects and a significant reduction in the width of 2-wall (P=0.008) and 3-wall (P<0.001) defects were observed. The depth decreased in 1-wall defects; however, this change was not statistically significant (P=0.066). Conclusions: Within the limitations of the current study, regenerative treatment of 2- and 3-wall intrabony defects associated with FDPs improved clinical and radiological outcomes. Additional prospective studies are necessary to confirm our findings and to assess long-term outcomes.

Antibacterial mesoporous Sr-doped hydroxyapatite nanorods synthesis for biomedical applications

  • Gopalu Karunakaran;Eun-Bum Cho;Keerthanaa Thirumurugan;Govindan Suresh Kumar;Evgeny Kolesnikov;Selvakumar Boobalan
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.507-519
    • /
    • 2023
  • Postsurgical infections are caused by implant-related pathogenic microorganisms that lead to graft rejection. Hence, an intrinsically antibacterial material is required to produce a biocompatible biomaterial with osteogenic properties that could address this major issue. Hence, this current research aims to make strontium-doped hydroxyapatite nanorods (SrHANRs) via an ethylene diamine tetraacetic acid (EDTA)-enable microwave mediated method using Anodontia alba seashells for biomedical applications. This investigation also perceives that EDTA acts as a soft template to accomplish Sr-doping and mesoporous structures in pure hydroxyapatite nanorods (HANRs). The X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis reveals the crystalline and mesoporous structures, and Brunauer-Emmett-Teller (BET) indicates the surface area of all the samples, including pure HANRs and doped HANRs. In addition, the biocidal ability was tested using various implant-related infectious bacteria pathogens, and it was discovered that Sr-doped HANRs have excellent biocidal properties. Furthermore, toxicity evaluation using zebrafish reports the non-toxic nature of the produced HANRs. Incorporating Sr2+ ions into the HAp lattice would enhance biocompatibility, biocidal activity, and osteoconductive properties. As a result, the biocompatible HANRs materials synthesized with Sr-dopants may be effective in bone regeneration and antibacterial in-built implant applications.

Effects of Chitosan on Human Periodontal Ligament Cells in Vitro (키토산이 배양중인 치주인대세포에 미치는 영향)

  • Kim, Ok-Su;Chung, Hyun-Ju
    • Journal of Periodontal and Implant Science
    • /
    • v.31 no.1
    • /
    • pp.163-180
    • /
    • 2001
  • The aim of this study was to evaluate the effects of chitosan coating on the attachment, proliferation, functional and morphological change of periodontal ligament cells. Primary human periodontal ligament cells were cultured in dulbecco's modified Eagle's medium with 10% fetal bovine serum and 1% antibiotics. In experimental group, cells of 4th to 7th passage were inoculated in the multiwell plates coated with chitosan in concentration of 0.22, 0.2, and $2mg/m{\ell}$. Cell counting and MTT assay were done after 0.5, 1.5, 3, 6 and 24 hours of incubation to evaluate the cell attachment, and then after 2 and 7 days of culture to evaluate the cell proliferation. The alkaline phosphatase activity was measured after 4 and 7 days of culture and the ability to produce mineralized modules was evaluated after 21 days of culture. The results were as follows : 1. The morphology of periodontal ligament cells on the chitosan coating was round or spheric. Round cells were aggregated after 6 hours of culture. Aggregated cells on the chitosan coated surface showed nodule-like appearance after 24 hours of culture and not achieved confluency at 7 days. 2. During early period of culture, the attachment of periodontal ligament cells were inhibited by chitosan coating. Inhibition of cell attachment tended to increase with the concentration of chitosan. 3. At the chitosan concentration of 0.02 and $0.2mg/m{\ell}$, periodontal ligament cells were more rapidly proliferated at 7 days, compared to the control group. At the concentration of $2mg/m{\ell}$, the proliferation of periodontal ligament cells was inhibitied(p<0.01). 4. Alkaline phosphatase activity of periodontal ligament cells was increased in chitosan coated group, especially at the concentration of $0.02mg/m{\ell}$after 4 days of culture.5. Periodontal ligament cells produced mineralized nodules on chitosan coated wells without the addition of mineralized nodule forming materials (ascorbic acid, ${\beta}-glycerophosphat$, dexamethasone). With the addition of mineralized nodule forming materials, periodontal ligament cells produced more mineralized nodules at the concentration of $0.02mg/m{\ell}$, compared to the control. In summary, the attachment, proliferation, cell activity, and alkaline phosphatase activity of periodontal ligament cells depended on the concentration of coated chitosan. Chitosan stimulated mineralized nodule formation by periodontal ligament cells. At the appropriate concentration($0.02mg/m{\ell}$), chitosan could increase alkaline phosphatase activity and stimulate the formation of mineralized nodule by periodontal ligament cells. These results suggest that chitosan can be used as an adjunct for bone graft material, and the matrix of tissue engineering for periodontal regeneration, especially bone regeneration.

  • PDF

The clinical effects of Calcium Sulfate combined with Calcium Carbonate in treating intrabony defects (치조골 결손부 치료시 calcium carbonate와 calcium sulfate 혼합물의 임상적 효과)

  • Lee, Seung-Bum;Chae, Gyung-Jun;Jung, Ui-Won;Kim, Chang-Sung;Choi, Seong-Ho;Cho, Kyoo-Sung;Kim, Chong-Kwan;Chai, Jung-Kyu
    • Journal of Periodontal and Implant Science
    • /
    • v.38 no.2
    • /
    • pp.237-246
    • /
    • 2008
  • Purpose: If bone grafts and guided tissue regeneration are effective individually in treating osseous defects, then the questionis, what would happen when they are combined. Bone grafts using Calcium Carbonate(Biocoral) and Guided Tissue Regeneration using Calcium Sulfate(CALMATRIX) will maximize their advantages and show the best clinical results in intrabony defects. This study was to compare the effects of a combination of CS and CC with control treated only with modified widman flap in a periodontal repair of intrabony defects. Materials and Methods: 30 patients with chronic periodontitis were used in this study. 10 patients were treated with a combination of CS and CC as the experimental group II and another 10 patients were treated with CC as the experimental group I, and the remaining 10 patients, the control group were treated only with modified widman flap. Clinical parameters including probing depth, gingival recession, bone probing depth and loss of attachment were recorded 6 months later. Results: The probing depth changes were $3.30{\pm}1.34\;mm$ in the control group, $4.2{\pm}1.55\;mm$ in the experimental group I(CC) and $5.00{\pm}1.33\;mm$ in the experimental group II(CS+CC). They all showed a significant decrease 6 months after surgery(p<0.01). There was a significant difference(p<0.05) between the control and experimental group. However there were no significant difference(p<0.05) between the experimental group I and II. The gingival recession changes w $-1.30{\pm}1.25\;mm$ in the control group, This is a significant difference(p<0.01). However, there was a $-0.50{\pm}0.53\;mm$ change in the experimental group I(CC) and $-0.60{\pm}0.97\;mm$ in the experimental group II(CS+CC). In addition, in terms of gingival recession, there was a no significance difference(p<0.05) among the groups. The clinical attachment level changes were $2.00{\pm}1.33\;mm$ in the control group, $3.60{\pm}1.58\;mm$ in the experimental group I(CC) and $4.40{\pm}1.17\;mm$ in the experimental group II(CS+CC). They all showed a significant decrease 6 months after surgery(p<0.01). There was a significant difference(p<0.05) between the control and experimental group. However there was a no significance difference(p<0.05) between the experimental group I and II. The bone probing depth changes were $0.60{\pm}0.52\;mm$ in the control group, $3.20{\pm}1.48\;mm$ in the experimental group I(CC) and $4.60{\pm}1.43\;mm$ in the experimental group II(CS+CC). All of them showed a significant decrease 6 months after surgery(p<0.01), there was a significance difference(p<0.05) among the groups. Conclusion: Treatment using a combination of CS and CC have a potential to improve periodontal parameters in intrabony defects and More efficient clinical results can be expected in intrabony defects less than 2 walls grafted with CS and CC.

A study on the differentiation of MC3T3-E1 incubated on the layer-built silica/polycaprolactone non-woven fabric produced by electrospinning (전기방사법으로 제조된 실리카/폴리카프로락톤 적층형 부직포에 배양한 골아 세포의 중식, 분화에 관한 연구)

  • AN, Min-Kuk;Kim, Kyoung-Hwa;Kim, Tae-II;Lee, Yong-Moo;Rhee, Sang-Hoon;Ku, Young;Rhyu, In-Chul;Chung, Chong-Pyoung;Han, Soo-Boo;Seol, Yang-Jo
    • Journal of Periodontal and Implant Science
    • /
    • v.37 no.1
    • /
    • pp.115-124
    • /
    • 2007
  • Silica is known as a promising osteoconductive material, and polycaprolactone is a bioactive and degradable material. The purpose of this study was to monitor the differentiation of MC3T3-E1 cells cultured on the layer-built silica/poly caprolactone non-woven fabric produced by electrospinning. Non-woven fabric (silica, polycaprolactone, PSP, SPS) was made by electrospinning and they were inserted in the 48 well cell culture plate. MC3T3-E1 cells were prepared by subculture. Cells were seeded to each well $1{\times}10^5$ concentration per well. Dulbecco's modified eagle medium with 10% FBS and 1% antibiotic-antimycotic solution was used. Confocal laser scanning microscope was taken 4 hours after incubation (95% air. 5% $CO_2$, $37^{\circ}C$). Cell proliferation was monitored by spectrophotometer on 1, 7, 14 days, and the morphology of the growing cells was observed by field emission scanning electron microscope. To monitor the differentiation of osteoblasts on the materials, MC3T3-E1 cells were incubated in 48 well culture plate after seeding with the density of $1{\times}10^5$ concentration. Then ELISA kit & EIA kit were used on to assess osteocalcin and osteopontin expression respectively. The other conditions were the same as above. MC3T3-E1 cells were proliferated well on all of the materials. There were no statistical differences among them. The osteopontin expression of silica, PSP, SPS was significantly higher than other groups on day 3 (p/0,05), but after that time, there were no statistically signigicant differences. The osteocalcin expression was significantly higher in silica and PSP than other groups on day 14. These findings show that PSP was as good as silica on the effect of osteoblast differentiation. The PSP non-woven fabric may have the possibility as bone graft materials.

TWO COLORIMETRIC ASSAYS VERIFY THAT CALCIUM SULFATE PROMOTES PROLIFERATING ACTIVITY OF HUMAN GINGIVAL FIBROBLASTS

  • Chae, Min;Kim, Su-Yeon;Kim, Soo-Yeon;Lee, Suk-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.382-388
    • /
    • 2007
  • Statement of problem. The role of calcium sulfate in stimulating the growth of gingival soft tissue has been reported in few studies. Such a unique property of calcium sulfate could serve as a trouble-solving broker in compensating for the lack of soft tissues in various oral surgeries. Purpose. The purpose of this study was to compare the proliferating activities of human gingival fibroblasts seeded on various bone graft barrier materials of calcium sulfate, collagen, and polytetrafluorethylene (PTFE). Material and methods. Two calcium sulfates ($CAPSET^{(R)}$. and $CalForma^{(R)}$, Lifecore Biomedical Inc., St. Paul, Minnesota, USA), a resorbable natural collagen ($Bio-Gide^{(R)}$, Geistlich Pharma Ag., Wolhusen, Switzerland), and a non-resorbable PTFE ($TefGen-FD^{(R)}$, Lifecore Biomedical Inc., St. Paul, Minnesota, USA) served as the human gingival fibroblasts' substrates and comprised the four experimental groups, whereas the untreated floors of culture plastics were used in the control group, in this study. Cells were trypsinized, seeded, and incubated for 48 h. The proliferating activities of fibroblasts were determined by XTT and SRB assay and absorbance (optical density, OD) was measured. One-way ANOVA was used to analyze the differences in the mean OD values between the groups of CAPSET, CalForma, Bio-Gide, TefGen, and the control (p<0.05). Results. From the XTT assay, the mean OD value of the control group, the highest, was significantly greater than that of any of the four experimental groups followed by CalForma, CAPSET, TefGen, and Bio-Gide. Further, the mean OD value of CalForma, was significantly greater compared to that of Bio-Gide. From the SRB assay, Calforma showed the highest mean OD value, which was significantly greater than that of any other groups, followed by the control, CAPSET, Bio-Gide, and TefGen. The mean OD values of both the control and CAPSET were significantly greater compared to that of TefGen (p<0.05). Conclusion. Assessment of the viability and proliferation of cultured fibroblasts seeded and incubated for 48 h on various barrier-material substrates using XTT and SRB assay showed that calcium sulfate $CalForma^{(R)}$ promotes the proliferating activity of human gingival fibroblasts.

Comparative Analysis of Biomechanical Behaviors on Lumbar with Titanium and Carbon Fiber Reinforced PEEK Connecting Rods for Fusion Surgery (티타늄과 탄소 섬유 강화 PEEK로 구성된 요추 유합술용 연결봉의 의공학적 영향에 대한 비교 분석)

  • Seo, Hye-Sung;Kang, Hae-Seong;Chun, Houng-Jae
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.186-191
    • /
    • 2021
  • The lumbar spinal fusion is a treatment performed to restore the stability of the degenerated lumbar. In this study, the intervertebral discs between two or more segments are removed and a bone graft is inserted to harden the segments. The pedicle screw system is inserted to vertebral bodies to fix two or more segments so that they can be firmly fused. In this study, a total of 7 patient-specific lumbar finite element models were created and pedicle screw systems were installed. The connecting rods made of titanium and CFR-PEEK was inserted to the generated models. Finite element analysis was conducted for four representative spine behaviors and statistical analysis was performed to investigate the biomechanical effects by the material properties of connecting rods. The intradiscal pressure of adjacent segments and the range of motion of the joints of each segment were investigated. In the subjects who used CFR-PEEK instead of Ti for connecting rods, the intradiscal pressure of adjacent segments tend to decrease and the range of motion of each segment tend to increase. However, no statistically significant difference in tendency was observed under all loading conditions.

The Use of Autogenous Periosteal Grafts for the Periodontal Regeneration in Mandibular Class II Furcation Defects in the Dog (성견의 2급 치근 분지부 결손에서 자가골막 이식에 의한 치주조직 재생)

  • Nam, Seung-Ji;Chung, Hyun-Ju;Kim, Young-Jun
    • Journal of Periodontal and Implant Science
    • /
    • v.30 no.2
    • /
    • pp.241-257
    • /
    • 2000
  • Autogenous periosteal grafts are an attractive alternative to existing barrier membrane materials since they meet the reqiurements of an ideal material. But no histological data are available on the effectiveness of periosteal membranes in the treatment of periodontal defects. The purpose of this study was to evaluate effect of autogenous periosteal graft on periodontal regeneration histologically. Class II furcation defects were surgically created on the second, third and the fourth premolars bilaterally in the mandibules of six mongrel dogs. The experimental sites were divided into three groups according to the treatment modalities; control group - surgical debridement only; Group I- autogenous periosteal membrane placement after surgical debridement; Group II-autogenous periosteal membrane placement after surgical debridement and bone grafting. The animals were sacrificed at 2, 4 and 12 weeks after periodontal surgery and the decalcified and undecalcified specimens were prepared for histological and histometrical analysis. Clinically all treated groups healed without significant problems. Under light microscope, at 2 weeks, control group showed significant apical epithelial migration and bone remodelling only below the notch area. But for the group I, II with autogenous periosteal graft, less apical migration of epithelium appeared and large amount of osteoid tissue showed above the notch area. Grafted periosteal membrane was indiscernable at 4 weeks, so periosteal membrane might be organized to surrounding tissues. Histometrically, at 4 and 12 weeks, all the test and control groups didn't show significant change of epithelial zone but new attachment level tended to be gained in the test groups than control group. These results suggest that autogenous periosteal grafts should be a good alternative for guided tissue regeneration.

  • PDF

Review of the developmental trend of implant surface modification using organic biomaterials (생체활성 유기물로 표면이 개질된 임플란트 개발 추이 분석 연구)

  • Hwang, Sung-Taek;Han, In-Ho;Huh, Jung-Bo;Kang, Jeong-Kyung;Ryu, Jae-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.3
    • /
    • pp.254-262
    • /
    • 2011
  • Purpose: This study aims to evaluate and prospect for current research trend and developmental perspectives via analyzing recent biomaterial coated-implants study. Materials and methods: To investigate each subject respectively, several biomaterials that are using for implant surface coating were set as 'keywords'. By these keywords, major research groups in each subject were chosen, and research trend of them was analyzed. Trend of In vivo studies that examined selected biomaterials were analyzed to evaluate commercial potential. Results: The collagen research accounted for 40% of total implant study, which was the highest, and fibronectin, BMPs (bone morphogenetic proteins) and RGD (Arg-Gly-Asp) peptides followed, which were ranked in descending order. Furthermore, figures of all four research subjects were also increased with time, especially a sharp increase in RGD research. According to the results of major research group, collagen that was combined with other organic and inorganic biomaterials was mostly examined, rather than using collagen only. Major research groups investigating BMPs mostly focused on rhBMP-2. In animal studies, collagen was used as resorbable membrane in guided bone regeneration (GBR) or drug carrier, while BMPs were used with bone graft materials or coating material for titanium implant surface. Conclusion: There is not consistency of results even in identical subjects research field. Many studies are ongoing to optimize combination between mechanical surface treatment and biomaterials such as extracellular matrix component and growth factors.