• Title/Summary/Keyword: Bone formation

Search Result 1,717, Processing Time 0.031 seconds

Maxillary Sinus Augmentation Using Autogenous Teeth: Preliminary Report (자가치아뼈이식재를 이용한 상악동증강술: 일차 보고)

  • Jeong, Kyung-In;Kim, Su-Gwan;Oh, Ji-Su;Lim, Sung-Chul
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.33 no.3
    • /
    • pp.256-263
    • /
    • 2011
  • Purpose: The purpose of this study was to evaluate the effectiveness of autogenous tooth graft materials after maxillary sinus bone grafts. Methods: The study involved 23 implants in 22 patients who visited the Department of Oral and Maxillofacial Surgery and the Department of Periodontics, Chosun University Dental Hospital, in 2008 and received autogenous tooth graft materials for maxillary sinus bone grafts. Results: For eight patients with maxillary bone graft materials prior to implant placement, the healing period averaged five months. For eleven patients with simultaneous maxillary bone graft and implant placement, eight patients received a second surgery, with an average healing time of six months. Three patients had a longer observation period with only a fixture implanted. Three patients who received only a bone graft required more time to implant placement because of the lack of residual bone and also for personal reasons. Only 5 patients had biopsies performed and complications such as infection and dehiscence healed well. The application of autogenous graft materials to the maxillary bone graft sites did not exert any significant effects on the success rates. When a mixture of graft materials was used, the post-surgical bone resorption rate was reduced. Histological analysis showed that new bone formation and remodeling were initiated during the three-to-six month healing period. Bone formation capacity increased continuously up to six months after the maxillary bone graft. Conclusion: According to this analysis, excellent stability and bone-forming capacity were seen in cases where autogenous materials were used alone or mixed with other materials. Autogenous tooth graft materials may be substituted instead of autogenous bones.

A STUDY OF EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON OSTEOGENESIS IN RABBIT CRANIAL BONE DEFECT (가토 두개부 골결손에서 맥동전자기장이 골형성에 미치는 영향에 관한 연구)

  • Hwang, Kyung-Gyun;Lee, Jong-Hwan;Kim, Myung-Jin;Shim, Kwang-Sup;Kim, Jong-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.28 no.4
    • /
    • pp.264-273
    • /
    • 2002
  • Pulsed electromagnetic field (PEMF) was used first to induce osteogenesis in 1974. The appliance which was consisted of the Helmholtz coil configuration have used to osteogensis. The objective of this study was to determine whether PEMF, a frequency of 100 Hz and magnetic field strength of 38 gauss applied to the calvarial defect in rabbit, could affect the induction of osteogenesis and the healing of the graft bone. This field should not produce excitation of nerve or muscle and heating the tissue. To evaluate the effect of PEMF on osteogenesis, 16 rabbit under the same condition was divided into 8 experimental groups and 8 control groups. 10 mm calvarial bone defects were formed around sagittal suture. The defect of left side was left without graft while the defect of right side was grafted by bone harvested from left side. A pulsed electromagnetic field was applied for 8 hours per day. Each group was sacrificed after 1 week, 2 weeks, 4 weeks, 8 weeks. Microscopic specimens were obtained from the calvarial bone defects and surrounding tissue using Hematoxylin-Eosin staining method. The results were as follows. 1. In the group which pulsed electromagnetic field was applied, new bone formation filled up the defect was observed after 4 and 8 weeks effectively. 2. There are no difference in the healing period for the fusion between the bone and graft bone. According to the result, the PEMF with 38 Gauss, 100 Hz was very effective in the healing of bone defect and new bone formation. So The PEMF will be useful in clinical aspect for oseteogenesis.

ON THE BONE TISSUE REACTION TO IMPLANTS WITH DIFFERENT SURFACE TREATMENT METHODS (임플랜트 표면 처리 방법에 따른 골조직 반응에 대한 연구)

  • Kim, Yong-Jae;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.1
    • /
    • pp.71-84
    • /
    • 2007
  • Statement of problem: Implant surface characteristics plays an important role in clinical success and many studies have been made for improvement of success by changing surface roughness. Purpose: Appropriate increase of surface roughness increases the activity of osteoblast and enhance contact and retention between bone and implant. Material and method- Machined, SLA and RBM surface implants, which are the most commonly used implants were implanted into the tibia of rabbits and after 1 week, 4 weeks, 8 weeks and 12 weeks there were histologic and histomorphometric analysis and study for bone gradient and change of Ca/P ratio using EDS(Energy Dispersive X-ray Spectroscope). Results: Comparison of bone-implant contact showed no significant difference among each implant. In comparison of bone area rates, SLA showed higher value with significant difference at 1 week and 4 weeks, and SLA and RBM at 8 weeks than Machined implant (p<0.05). In analysis of bone constituents with EDS, titanium was specifically detected in new bones and the rates were constant by surface treatment method or period. In case of Ca/P ratio, according to surface treatment method, each group showed significant difference. Lots of old bone fragments produced during implantation remained on the rough surface of RBM implant surface and each group showed histological finding with active synthesis of collagen fibers until 12 weeks. In transmission electronic microscopic examination of sample slice after elapse of twelve weeks, tens nm of borderline (lamina limitans like dense line)was seen to contact the bone, on the interface between bone and implant. Conclusion: SLA and RBM implant with rough surface shows better histomorphometrical result and the trend of prolonged bone formation and maturation in comparison with Machined implant. In addition, implant with rough surface seems to be helpful in early stage bone formation due to remaining of old bone fragments produced in implantation. From the results above, it is considered to be better to use implant with rough surface in implantation.

Development of an experimental model for radiation-induced inhibition of cranial bone regeneration

  • Jung, Hong-Moon;Lee, Jeong-Eun;Lee, Seoung-Jun;Lee, Jung-Tae;Kwon, Tae-Yub;Kwon, Tae-Geon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.34.1-34.8
    • /
    • 2018
  • Background: Radiation therapy is widely employed in the treatment of head and neck cancer. Adverse effects of therapeutic irradiation include delayed bone healing after dental extraction or impaired bone regeneration at the irradiated bony defect. Development of a reliable experimental model may be beneficial to study tissue regeneration in the irradiated field. The current study aimed to develop a relevant animal model of post-radiation cranial bone defect. Methods: A lead shielding block was designed for selective external irradiation of the mouse calvaria. Critical-size calvarial defect was created 2 weeks after the irradiation. The defect was filled with a collagen scaffold, with or without incorporation of bone morphogenetic protein 2 (BMP-2) (1 ㎍/ml). The non-irradiated mice treated with or without BMP-2-included scaffold served as control. Four weeks after the surgery, the specimens were harvested and the degree of bone formation was evaluated by histological and radiographical examinations. Results: BMP-2-treated scaffold yielded significant bone regeneration in the mice calvarial defects. However, a single fraction of external irradiation was observed to eliminate the bone regeneration capacity of the BMP-2-incorporated scaffold without influencing the survival of the animals. Conclusion: The current study established an efficient model for post-radiation cranial bone regeneration and can be applied for evaluating the robust bone formation system using various chemokines or agents in unfavorable, demanding radiation-related bone defect models.

Maxillary sinus floor augmentation with anorganic bovine bone : Histologic evaluation in humans (Anorganic bovine bone을 이용한 상악동저 거상술의 조직학적 평가)

  • Son, Woo-Kyung;Shin, Seung-Yun;Yang, Seung-Min;Kye, Seung-Beom
    • Journal of Periodontal and Implant Science
    • /
    • v.39 no.1
    • /
    • pp.95-102
    • /
    • 2009
  • Purpose: The aim of this report is to investigate the efficacy of anorganic bovine bone xenograft(Bio-$Oss^{(R)}$) at maxillary sinus floor augmentation. Materials and methods: Two male patients who missed maxillary posterior teeth were included. They were performed maxillary sinus floor augmentation using anorganic bovine bone xenograft(Bio-$Oss^{(R)}$). After 10 or 13 months, the regenerated tissues were harvested using trephine drills with 2 or 4mm diameter and non-decalcified specimens were made. The specimens were examined histologically and histomorphometrically to investigate graft resorption and new bone formation. Results: Newly formed bone was in contact with Bio-$Oss^{(R)}$ particles directly without any gap between the bone and the particles. The proportions of newly formed bone were $23.4{\sim}25.3%$ in patient 1(Pt.1) and 28.8% in patient 2(Pt.2). And the proportions of remained Bio-$Oss^{(R)}$ were $29.7{\sim}30.2%$ in Pt.1 and 29.2% in Pt.2. The fixtures installed at augmented area showed good stability and the augmented bone height was maintained well. Conclusion: Anorganic bovine bone xenograft(Bio-$Oss^{(R)}$) has high osteoconductivity and helps new bone formation, so that it can be used in maxillary sinus floor augmentation.

Tectorigenin Promotes Osteoblast Differentiation and in vivo Bone Healing, but Suppresses Osteoclast Differentiation and in vivo Bone Resorption

  • Lee, So-Youn;Kim, Gyu-Tae;Yun, Hyung-Mun;Kim, Youn-Chul;Kwon, Il- Keun;Kim, Eun-Cheol
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.476-485
    • /
    • 2018
  • Although tectorigenin (TG), a major compound in the rhizome of Belamcanda chinensis, is conventionally used for the treatment of inflammatory diseases, its effects on osteogenesis and osteoclastogenesis have not been reported. The objective of this study was to investigate the effects and possible underlying mechanism of TG on in vitro osteoblastic differentiation and in vivo bone formation, as well as in vitro osteoclast differentiation and in vivo bone resorption. TG promoted the osteogenic differentiation of primary osteoblasts and periodontal ligament cells. Moreover, TG upregulated the expression of the BMP2, BMP4, and Smad-4 genes, and enhanced the expression of Runx2 and Osterix. In vivo studies involving mouse calvarial bone defects with ${\mu}CT$ and histologic analysis revealed that TG significantly increased new bone formation. Furthermore, TG treatment inhibited osteoclast differentiation and the mRNA levels of osteoclast markers. In vivo studies of mice demonstrated that TG caused the marked attenuation of bone resorption. These results collectively demonstrated that TG stimulated osteogenic differentiation in vitro, increased in vivo bone regeneration, inhibited osteoclast differentiation in vitro, and suppressed inflammatory bone loss in vivo. These novel findings suggest that TG may be useful for bone regeneration and treatment of bone diseases.

EFFECTS OF HYPOXIA ON THE FORMATION OF OSTEOCLAST (저산소증이 파골세포 분화에 미치는 영향에 관한 연구)

  • Sim, Hye-Young;Jung, Da-Un;Chae, Chang-Hoon;Lee, Young;Jang, Eun-Sik;Choi, Mee-Ra;Hong, Soon-Min;Park, Jun-Woo
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.1
    • /
    • pp.23-26
    • /
    • 2010
  • The vascular changes in periodontal tissues cause local hypoxia which seems to affect the periodontal tissue cells. Abrupt changes in oxygen availability within the periodontium have been suggested to have a regulatory role in alveolar bone remodeling during tooth movement, bone growth or fracture healing. The purpose of this study was to study the effects of hypoxia on formation of osteoclast responsible for bone resorption, in vitro. Primary mouse bone marrow cells were cultured in normoxic (20% $O_2$) and hypoxic (1% $O_2$) conditions and assayed for cellular proliferation. The results obtained were as follows : 1. Reducing oxygen tension increased the formation of multinucleated osteoclasts. 2. Hypoxic stimulus increased the size of mature osteoclasts.

The Effects of Dexamethasone on Growth and Differentiation of Osteoblast-like Cell (덱사메타존이 골아유사세포의 성장과 분화에 미치는 영향)

  • Lee, Jae-Mok
    • Journal of Periodontal and Implant Science
    • /
    • v.29 no.2
    • /
    • pp.277-289
    • /
    • 1999
  • The ultimate aim of periodontal treatment is periodontal regeneration, which necessiates the regeneration of bone tissues. To evaluate the effects of Dex growth and differentiation of MC3T3-E1 cells, cells were seeded in alpha-modified eagle medium containing 10% fetal bovine serum, 10mM beta-glycerophosphate , $50{\mu}g/ml$ of ascorbic acid, with or without $10^{-7}M$ Dex and examined cell proliferation activities, alkaline phosphatase activities, and bone nodule formation until 25days. The results were as follows : 1. In Dex group, cell proliferation activities were lower until 15 days compared to control group. Bone nodules formation were showed at 10 days. 2. In the time-response effect, ALP activities were increased until the 10 days in control groups thereafter decreased and ALP activities of Dex group were lower aspect than control group until the 10 days In this study, bone nodule formation of osteoblast-like cells were accelerated by Dex and cell proliferation activities, ALP activity of Dex group showed lower than control group. Dex was considered that it did suppress initial growth, but accerelate mineralization of osteoblast-like cells.

  • PDF

Ectopic Bone Formation Induced By BMP - Fibrous Collagen Membrane Composite (BMP-교원질 섬유막 복합체에 의한 이소성 골형성)

  • Shin, Hong-In;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.68-79
    • /
    • 1996
  • To investigate the efficiency of a fibrous collagen membrane(FCM) composed of bovine skin type I atelocollagen as a carrier for BMP, partially purified bovine BMP/FCM($0.3mg/10{\times}5{\times}1mm$) composites were implanted into the dorsal subcutaneous tissue of rats. FCM alone was also implanted as a control. The implants were harvested at 1, 2, 3, and 10 weeks after implantation, then prepared for routine light microscopic observation. The FCM alone did not induce osteogenesis and revealed no specific foreign body reaction nor was there any definite resorptive evidence for 10 weeks after implantation, while the BMP/FCM composites induced favorable bone formation in a process that resembled an endochondral and direct ossification mode. At 10 weeks, the well formed bone confined to embedded collagen fibers revealed hematopoietic marrow between bony trabeculae without evidence of resorptive or degenerative changes . These findings support the suggestion that BMP may induce undifferentiated mesenchymal cells into either chondroblasts or osteoblasts or both independantly according to the chemico- physical characteristics of the carrier, which develops the endochondral and/or direct bone formation process, and suggest that the FCM may be a favorable carrier for BMP.

  • PDF

Enhancement of Parathyroid Hormone in Postmenopausal Women by Chlorella Dietary Supplementation

  • Kim, Dong-Uk;Seong, Hee-Kyung;Hwang, Jung-Min;Jeon, Ae-Ran;Yun, Ji-Young;Kim, Yong-Ho
    • Biomedical Science Letters
    • /
    • v.9 no.1
    • /
    • pp.15-19
    • /
    • 2003
  • Parathyroid hormone has clearly emerged as the most promising new anabolic treatment for osteoporosis by increasing the activation of osteoblast. It is known that chlorella increases both bone mineral density (BMD) and the rate of bone formation. The purpose of the present study was to determine whether the chlorella dietary supplementation could effect the thyroid or parathyroid hormones associated with increased BMD and bone formation. Twenty-two postmenopausal woman were treated for four month with 4 gm of chlorella dietary supplementation per day, then assessed serum calcium,25 OH vitamin D$_3$, thyroid hormone and parathyroid hormone before and after treatment. The mean 25 OH vitamin D$_3$ and parathyroid hormone were shown to marked increases by 193% and 265% respectively, in contrast to decreases by 9.4%, 37%, 33% and 14% in serum calcium, triiodo-thyroxine, free thyroxine and thyroxine stimulation hormone. In conclusion, treatment of postmenopausal women with chlorella dietary supplementation resulted in an increase in BMD and bone formation through enhancement of parathyroid hormone and 25 OH vitamin D$_3$, and a decrease in thyroid hormones.

  • PDF