Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0056

Tectorigenin Promotes Osteoblast Differentiation and in vivo Bone Healing, but Suppresses Osteoclast Differentiation and in vivo Bone Resorption  

Lee, So-Youn (Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University)
Kim, Gyu-Tae (Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University)
Yun, Hyung-Mun (Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University)
Kim, Youn-Chul (Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University)
Kwon, Il- Keun (Department of Dental Materials, School of Dentistry, Kyung Hee University)
Kim, Eun-Cheol (Department of Oral and Maxillofacial Pathology, School of Dentistry, Kyung Hee University)
Abstract
Although tectorigenin (TG), a major compound in the rhizome of Belamcanda chinensis, is conventionally used for the treatment of inflammatory diseases, its effects on osteogenesis and osteoclastogenesis have not been reported. The objective of this study was to investigate the effects and possible underlying mechanism of TG on in vitro osteoblastic differentiation and in vivo bone formation, as well as in vitro osteoclast differentiation and in vivo bone resorption. TG promoted the osteogenic differentiation of primary osteoblasts and periodontal ligament cells. Moreover, TG upregulated the expression of the BMP2, BMP4, and Smad-4 genes, and enhanced the expression of Runx2 and Osterix. In vivo studies involving mouse calvarial bone defects with ${\mu}CT$ and histologic analysis revealed that TG significantly increased new bone formation. Furthermore, TG treatment inhibited osteoclast differentiation and the mRNA levels of osteoclast markers. In vivo studies of mice demonstrated that TG caused the marked attenuation of bone resorption. These results collectively demonstrated that TG stimulated osteogenic differentiation in vitro, increased in vivo bone regeneration, inhibited osteoclast differentiation in vitro, and suppressed inflammatory bone loss in vivo. These novel findings suggest that TG may be useful for bone regeneration and treatment of bone diseases.
Keywords
bone remodeling; differentiation; osteoblast; osteoclast; tectorigenin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, Y.P., Yamada, M., Lim, S.S., Lee, S.H., Ryu, N., Shin, K.H., and Ohuchi, K. (1999). Inhibition by tectorigenin and tectoridin of prostaglandin E2 production and cyclooxygenase-2 induction in rat peritoneal macrophages. Biochim. Biophys. Acta. 1438, 399-407.   DOI
2 Kim, H.K., Cheon, B.S., Kim, Y.H., Kim, S.Y., and Kim, H.P. (1999). Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem. Pharmacol. 58, 759-765.   DOI
3 Kim, H. H., Kim, J.H., Kwak, H.B., Huang, H., Han, S.H., Ha, H., Lee, S.W., Woo, E.R., and Lee, Z.H. (2004). Inhibition of osteoclast differentiation and bone resorption by tanshinone IIA isolated from Salvia miltiorrhiza Bunge. Biochem. Pharmacol. 67, 1647-1656.   DOI
4 Lee, K.T., Sohn, I.C., Kim, Y.K., Choi, J.H., Choi, J.W., Park, H.J., Itoh, Y., and Miyamoto, K. (2001). Tectorigenin, an isoflavone of Pueraria thunbergiana Benth., induces differentiation and apoptosis in human promyelocytic leukemia HL-60 cells. Biol. Pharm. Bull. 24, 1117-1121.   DOI
5 Lee, S.E., Woo, K.M., Kim, S.Y., Kim, H.M., Kwack, K., Lee, Z.H., and Kim, H.H. (2002). The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 30, 71-77.
6 Lee, S.K., Chung, J.H., Choi, S.C., Auh, Q.S., Lee, Y.M., Lee, S.I., and Kim, E.C. (2013). Sodium hydrogen sulfide inhibits nicotine and lipopolysaccharide-induced osteoclastic differentiation and reversed osteoblastic differentiation in human periodontal ligament cells. J. Cell Biochem. 114, 1183-1193.   DOI
7 Kim, T.J. (1996) Korean resources plants. Vol. 2, 322, Seoul National University Press.
8 Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., et al. (2002). Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3, 889-901.   DOI
9 Thelen, P., Scharf, J.G., Burfeind, P., Hemmerlein, B., Wuttke, W., Spengler, B., Christoffel, V., Ringert, R.H., and Seidlova-Wuttke. D. (2005). Tectorigenin and other phytochemicals extracted from leopard lily Belamcanda chinensis affect new and established targets for therapies in prostate cancer. Carcinogenesis 26, 1360-1367.   DOI
10 Wang, T., Wan, D., Shao, L., Dai, J., and Jiang, C. (2015). Notoginsenoside R1 stimulates osteogenic function in primary osteoblasts via estrogen receptor signaling. Biochem. Biophys. Res. Commun. 466, 232-239.   DOI
11 Wu, J.H., Wang, Y.R., Huang, W.Y., and Tan, R.X. (2010). Antiproliferative and pro-apoptotic effects of tectorigenin on hepatic stellate cells. World J. Gastroenterol. 16, 3911-3918.   DOI
12 Yang, Y.I., Lee, K.T., Park, H.J., Kim, T.J., Choi, Y.S., Shih, Ie, M., and Choi, J.H. (2012). Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NF kappaB pathway. Carcinogenesis 33, 2488-2498.   DOI
13 Yun, H. M., Park, K.R., Quang, T.H., Oh, H., Hong, J.T., Kim, Y.C., and Kim, E.C. (2015). 2,4,5-Trimethoxyldalbergiquinol promotes osteoblastic differentiation and mineralization via the BMP and Wnt/beta-catenin pathway. Cell Death Dis. 6, e1819.   DOI
14 Liu, M., Yang, S., Jin, L., Hu, D., Wu, Z., and Yang, S. (2012). Chemical constituents of the ethyl acetate extract of Belamcanda chinensis (L.) DC roots and their antitumor activities. Molecules 17, 6156-6169.   DOI
15 Dastmalchi, M., and Dhaubhadel, S. (2015). Proteomic insights into synthesis of isoflavonoids in soybean seeds. Proteomics 15, 1646-1657.   DOI
16 Faccio, R., Teitelbaum, S.L., Fujikawa, K., Chappel, J., Zallone, A., Tybulewicz, V.L., Ross, F.P., and Swat, W. (2005). Vav3 regulates osteoclast function and bone mass. Nat. Med. 11, 284-290.   DOI
17 Ferretti, M., Bertoni, L., Cavani, F., Zavatti, M., Resca, E., Carnevale, G., Benelli, A., Zanoli, P., and Palumbo, C. (2010). Influence of ferutinin on bone metabolism in ovariectomized rats. II: role in recovering osteoporosis. J. Anat. 217, 48-56.   DOI
18 Lee, S.I., Lee, D.W., Yun, H.M., Cha, H.J., Bae, C.H., Cho, E.S., and Kim, E.C. (2015). Expression of thymosin beta-4 in human periodontal ligament cells and mouse periodontal tissue and its role in osteoblastic/cementoblastic differentiation. Differentiation 90, 16-26.   DOI
19 Li, Q.Y., Chen, L., Yan, M.M., Shi, X.J., and Zhong, M.K. (2015). Tectorigenin regulates adipogenic differentiation and adipocytokines secretion via PPARgamma and IKK/NF-kappaB signaling. Pharm. Biol. 53, 1567-1575.   DOI
20 Ma, C.H., Liu, J.P., Qu, R., and Ma, S.P. (2014). Tectorigenin inhibits the inflammation of LPS-induced acute lung injury in mice. Chin. J. Nat. Med. 12, 841-846.
21 Marie, P.J., and Kassem, M. (2011). Osteoblasts in osteoporosis: past, emerging, and future anabolic targets. Eur. J. Endocrinol. 165, 1-10.   DOI
22 Murakami, Y., Kojima, T., Nagasawa, T., Kobayashi, H., and Ishikawa, I. (2003). Novel isolation of alkaline phosphatase-positive subpopulation from periodontal ligament fibroblasts. J. Periodontol. 74, 780-786.   DOI
23 Muraki, S. (2014). Epidemiology of bone and joint disease-the present and future-. Epidemiology of falls. Clin. Calcium 24, 679-684.
24 Nohe, A., Keating, E., Knaus, P., and Petersen, N.O. (2004). Signal transduction of bone morphogenetic protein receptors. Cell Signal 16, 291-299.   DOI
25 Pan, C.H., Kim, E.S., Jung, S.H., Nho, C.W., and Lee, J.K. (2008). Tectorigenin inhibits IFN-gamma/LPS-induced inflammatory responses in murine macrophage RAW 264.7 cells. Arch. Pharm. Res. 31, 1447-1456.   DOI
26 Jeong, G.S., An, R.B., Oh, S.H., Kang, D.G., Lee, H.S., and Kim, Y.C. (2007). Cytoprotective activity of Belamcanda chinensis rhizome against glutamate-induced oxidative injury in HT22 cells. Nat. Prod. Sci. 13, 101-104.
27 Ha le, M., Que do, T.N., Huyen do, T.T., Long, P.Q. , and Dat, N.T. (2013). Toxicity, analgesic and anti-inflammatory activities of tectorigenin. Immunopharmacol. Immunotoxicol. 35, 336-340.   DOI
28 Han, T., Cheng, G., Liu, Y., Yang, H., Hu, Y.T., and Huang, W. (2012). In vitro evaluation of tectoridin, tectorigenin and tectorigenin sodium sulfonate on antioxidant properties. Food Chem. Toxicol. 50, 409-414.   DOI
29 Herr, Y., Matsuura, M., Lin, W.L., Genco, R.J., and Cho, M.I. (1995). The origin of fibroblasts and their role in the early stages of horizontal furcation defect healing in the beagle dog. J. Periodontol. 66, 716-730.   DOI
30 Kapoor, S. (2013). Tectorigenin and its inhibitory effects on tumor growth in systemic malignancies. Immunopharmacol. Immunotoxicol. 35, 533.   DOI
31 Kitagawa, M., Kudo, Y., Iizuka, S., Ogawa, I., Abiko, Y., Miyauchi, M., and Takata, T. (2006). Effect of F-spondin on cementoblastic differentiation of human periodontal ligament cells. Biochem. Biophys. Res. Commun. 349, 1050-1056.   DOI
32 Rho, J., Takami, M., and Choi, Y. (2004). Osteoimmunology: interactions of the immune and skeletal systems. Mol Cells 17, 1-9.
33 Prince, M., Banerjee, C., Javed, A., Green, J., Lian, J.B., Stein, G.S., Bodine, P.V., Komm, B.S. (2001). Expression and regulation of Runx2/Cbfa1 and osteoblast phenotypic markers during the growth and differentiation of human osteoblasts. J. Cell Biochem. 80, 424-440.   DOI
34 Riggs, B.L., and Hartmann, L.C. (2003). Selective estrogen-receptor modulators-mechanisms of action and application to clinical practice. N. Engl. J. Med. 348, 618-629.   DOI
35 Riggs, B.L., and Parfitt, A.M. (2005). Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J. Bone Miner. Res. 20, 177-184.
36 Sakuma, Y., Tanaka, K., Suda, M., Yasoda, A., Natsui, K., Tanaka, I., Ushikubi, F., Narumiya, S., Segi, E., Sugimoto, Y., et al. (2000). Crucial involvement of the EP4 subtype of prostaglandin E receptor in osteoclast formation by proinflammatory cytokines and lipopolysaccharide. J. Bone Miner. Res. 15, 218-227.
37 Shin, S. Y., Tanaka, K., Suda, M., Yasoda, A., Natsui, K., Tanaka, I., Ushikubi, F., Narumiya, S., Segi, E., Sugimoto, Y., et al. (2015). Expression of phospholipase D in periodontitis and its role in the inflammatory and osteoclastic response by nicotine- and lipopolysaccharide-stimulated human periodontal ligament cells. J. Periodontol. 86, 1405-1416.   DOI
38 Tao, X., Qi, Y., Xu, L., Yin, L., Han, X., Xu, Y., Wang, C., Sun, H., and Peng, J. (2016). Dioscin reduces ovariectomy-induced bone loss by enhancing osteoblastogenesis and inhibiting osteoclastogenesis. Pharmacol. Res. 108, 90-101.   DOI
39 Bae, W. J., Shin, M.R., Kang, S.L., Zhang J., Kim, J.Y., and Lee, S.C. (2015). HIF-2 Inhibition suppresses inflammatory responses and osteoclastic differentiation in human periodontal ligament cells. J. Cell Biochem. 116, 1241-1255.   DOI
40 Augustine, M., and Horwitz, M.J. (2013). Parathyroid hormone and parathyroid hormone-related protein analogs as therapies for osteoporosis. Curr. Osteoporos. Rep. 11, 400-406.   DOI
41 Cao, X., and Chen, D. (2005). The BMP signaling and in vivo bone formation. Gene 357, 1-8.   DOI
42 Chen, K. M., Ge, B.F., Ma, H.P., Liu, X.Y., Bai, M.H., and Wang, Y. (2005). Icariin, a flavonoid from the herb Epimedium enhances the osteogenic differentiation of rat primary bone marrow stromal cells. Pharmazie 60, 939-942.