• Title/Summary/Keyword: Bone Marrow Derived Macrophage

Search Result 49, Processing Time 0.03 seconds

GM-CSF Grown Bone Marrow Derived Cells Are Composed of Phenotypically Different Dendritic Cells and Macrophages

  • Na, Yi Rang;Jung, Daun;Gu, Gyo Jeong;Seok, Seung Hyeok
    • Molecules and Cells
    • /
    • v.39 no.10
    • /
    • pp.734-741
    • /
    • 2016
  • Granulocyte-macrophage colony stimulating factor (GM-CSF) has a role in inducing emergency hematopoiesis upon exposure to inflammatory stimuli. Although GM-CSF generated murine bone marrow derived cells have been widely used as macrophages or dendritic cells in research, the exact characteristics of each cell population have not yet been defined. Here we discriminated GM-CSF grown bone marrow derived macrophages (GM-BMMs) from dendritic cells (GM-BMDCs) in several criteria. After C57BL/6J mice bone marrow cell culture for 7 days with GM-CSF supplementation, two main populations were observed in the attached cells based on MHCII and F4/80 marker expressions. GM-BMMs had $MHCII^{low}F4/80^{high}$ as well as $CD11c^+CD11b^{high}CD80^-CD64^+MerTK^+$ phenotypes. In contrast, GM-BMDCs had $MHCII^{high}F4/80^{low}$ and $CD11c^{high}CD8{\alpha}^-CD11b^+CD80^+CD64^-MerTK^{low}$ phenotypes. Interestingly, the GM-BMM population increased but GM-BMDCs decreased in a GM-CSF dose-dependent manner. Functionally, GM-BMMs showed extremely high phagocytic abilities and produced higher IL-10 upon LPS stimulation. GM-BMDCs, however, could not phagocytose as well, but were efficient at producing $TNF{\alpha}$, $IL-1{\beta}$, IL-12p70 and IL-6 as well as inducing T cell proliferation. Finally, whole transcriptome analysis revealed that GM-BMMs and GM-BMDCs are overlap with in vivo resident macrophages and dendritic cells, respectively. Taken together, our study shows the heterogeneicity of GM-CSF derived cell populations, and specifically characterizes GM-CSF derived macrophages compared to dendritic cells.

Immune enhancing activity of Sargassum horneri extracts via MAPK pathway in macrophages (대식세포에서 괭생이모자반 추출물의 MAPKs 기전 통한 면역활성 증가 효과)

  • 김동섭;김민지;성낙윤;한인준;김건;김춘성;유영춘;정윤우
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.12-23
    • /
    • 2023
  • Sargassum horneri (SH), a brown macroalgae, has medicinal properties. The present study investigated the immune-enhancing effects of SH extract on peritoneal macrophages (PM). The SH significantly increased the production of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and nitric oxide (NO) in PM. It was confirmed that SH significantly increased NO expression through the increase of iNOS protein expression, which is the up-regulation pathway. Additionally, it was determined if SH activates the mitogen-activated protein kinase (MAPK) pathway, an upper regulatory mechanism that influences TNF-α, IL-6, and NO expression. Consequently, SH significantly increased the phosphorylation of p38, extracellular signal-regulated kinases (ERK), and c-Jun N-terminal kinase (JNK), all of which are MAPK pathway proteins. Moreover, the immune-enhancing effects of SH on another macrophage cell line, bone marrow-derived macrophages were investigated. It was observed that SH significantly enhanced TNF-α, IL-6, and NO production. Overall, this study demonstrates the immune-enhancing effects of SH on macrophages via activated MAPK pathway. Therefore, it suggests that SH has the potential to improve immunological activity in various macrophage cell lines and can be useful as an immune-enhancing treatment.

Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice

  • Kim, Ok-Hee;Kim, Hyojung;Kang, Jinku;Yang, Dongki;Kang, Yu-Hoi;Lee, Dae Ho;Cheon, Gi Jeong;Park, Sang Chul;Oh, Byung-Chul
    • BMB Reports
    • /
    • v.50 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • Accumulation of tissue macrophages is a significant characteristic of disease-associated chronic inflammation, and facilitates the progression of disease pathology. However, the functional roles of these bone marrow-derived macrophages (BMDMs) in aging are unclear. Here, we identified age-dependent macrophage accumulation in the bone marrow, showing that aging significantly increases the number of M1 macrophages and impairs polarization of BMDMs. We found that age-related dysregulation of BMDMs is associated with abnormal overexpression of the anti-inflammatory interleukin-10. BMDM dysregulation in aging impairs the expression levels of pro-inflammatory cytokines and genes involved in B-cell maturation and activation. Phagocytosis of apoptotic Jurkat cells by BMDMs was reduced because of low expression of phagocytic receptor CD14, indicating that increased apoptotic cells may result from defective phagocytosis of apoptotic cells in the BM of aged mice. Therefore, CD14 may represent a promising target for preventing BMDM dysregulation, and macrophage accumulation may provide diagnostic and therapeutic clues.

Effects of Juglans regia Complex Extract on Osteoclast Differentiation from Bone Marrow Derived Macrophage (호두복합추출물이 골수유래대식세포의 파골세포 분화에 미치는 효과)

  • Kong, Hae Jin;Kang, Jae Hui;Ryu, Hwa Yeon;Lee, Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.3
    • /
    • pp.169-174
    • /
    • 2019
  • The purpose of this study was to evaluate the inhibitory effects of Juglans regia complex extract(JCE) consisted of Juglans regia, Eucommia ulmoides, Eleutherococcus senticosus and Zingiber officinale on osteoclast differentiation. Cell toxicity test by using CCK-8, TRAP activity and TRAP positive multi-nucleated cell counting were performed to evaluate inhibitory effect on differentiation of osteoclast from bone marrow derived macrophages(BMMs) induced by receptor activator of nuclear $factor-{\kappa}B$ ligand(RANKL). As a result, JCE inhibited RANKL-induced osteoclast differentiation in BMMs dose-dependently without cytotoxicity. These results suggest that JCE may have a potential role for treating bone lytic diseases such as osteoporosis.

Study on the Immune Mechanism using Primary-cultured Immune Cells (생체분리 면역세포를 이용한 면역기전 연구)

  • Kim, Changhwan;Park, Sangjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.390-397
    • /
    • 2013
  • Primary-cultured immune cells are widely used in research to elucidate the mechanism of inflammation including chemotaxis, production of reactive oxygen species, cytokine release and antigen presenting. Mice are one of the species of experimental animals commonly used for such studies. Immune cells can be isolated and cultured from various organs such as bone marrow, peritoneal cavity, lung, spleen. For elaborated experimental studies, immune cells should be elicited with inflammatory substances or proliferated in vitro with special media. This paper details methods of obtaining immune cells from various organs of mice and investigating immune mechanism using isolated immune cells. It contains standard protocols of isolating and culturing immune cells from bone marrow, peritoneal cavity and lymphoid organs. It also covers the methods of investigating immune mechanism such as ELISA, western blotting, confocal microscopy and ELISPOT assay. With the works in this study, we established the standardized isolation and analysis methods of primary-cultured immune cells.

Increasing injection frequency enhances the survival of injected bone marrow derived mesenchymal stem cells in a critical limb ischemia animal model

  • Kang, Woong Chol;Oh, Pyung Chun;Lee, Kyounghoon;Ahn, Taehoon;Byun, Kyunghee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.6
    • /
    • pp.657-667
    • /
    • 2016
  • Critical limb ischemia (CLI) is one of the most severe forms of peripheral artery diseases, but current treatment strategies do not guarantee complete recovery of vascular blood flow or reduce the risk of mortality. Recently, human bone marrow derived mesenchymal stem cells (MSCs) have been reported to have a paracrine influence on angiogenesis in several ischemic diseases. However, little evidence is available regarding optimal cell doses and injection frequencies. Thus, the authors undertook this study to investigate the effects of cell dose and injection frequency on cell survival and paracrine effects. MSCs were injected at $10^6$ or $10^5$ per injection (high and low doses) either once (single injection) or once in two consecutive weeks (double injection) into ischemic legs. Mice were sacrificed 4 weeks after first injection. Angiogenic effects were confirmed in vitro and in vivo, and M2 macrophage infiltration into ischemic tissues and rates of limb salvage were documented. MSCs were found to induce angiogenesis through a paracrine effect in vitro, and were found to survive in ischemic muscle for up to 4 weeks dependent on cell dose and injection frequency. In addition, double high dose and low dose of MSC injections increased vessel formation, and decreased fibrosis volumes and apoptotic cell numbers, whereas a single high dose did not. Our results showed MSCs protect against ischemic injury in a paracrine manner, and suggest that increasing injection frequency is more important than MSC dosage for the treatment CLI.

Effects of rhubarb extract on osteoclast differentiation in bone marrow-derived macrophages (대황 추출물이 골수유래 대식세포의 파골세포 분화에 미치는 영향)

  • In-A Cho
    • Journal of Korean society of Dental Hygiene
    • /
    • v.23 no.4
    • /
    • pp.219-226
    • /
    • 2023
  • Objectives: This study aimed to investigate the effects of rhubarb extract on osteoclast differentiation in bone marrow-derived macrophages (BMMs). Osteoclasts are vital for bone resorption and remodeling. Osteoclast dysregulation can contribute to various bone-related disorders that directly affect oral health. Rhubarb, a medicinal plant with anti-inflammatory properties, has been shown to modulate bone metabolism. Methods: BMMs were isolated from the femurs and tibias of 5-week-old C57BL/6 mice and cultured in the presence of mouse macrophage colony-stimulating factor (M-CSF) for 3 days. Subsequently, BMMs were treated with M-CSF and receptor activator of nuclear factor-κB ligand (RANKL) to induce osteoclast differentiation. Results: Rhubarb extract effectively suppressed osteoclast differentiation in BMMs. Furthermore, rhubarb extract inhibited the mRNA expression of tartrate-resistant acid phosphatase (TRAP) and cathepsin K (CTSK), which are essential for osteoclastogenesis. Moreover, it inhibited the RANKL-induced expression of nuclear factor of activated T cell c1 (NFATc1), a crucial transcription factor in osteoclast differentiation. Conclusions: These results suggest that rhubarb extract promotes oral health by inhibiting osteoclastogenesis in BMMs. Thus, rhubarb extract shows promise as a therapeutic agent for bone-related disorders that directly affect oral health, particularly those associated with abnormal osteoclast activity. Further research and exploration of the underlying mechanisms are warranted to fully understand their potential clinical applications.

Rosmarinic Acid Down-Regulates the LPS-Induced Production of Monocyte Chemoattractant Protein-1 (MCP-1) and Macrophage Inflammatory Protein-1α (MIP-1α) via the MAPK Pathway in Bone-Marrow Derived Dendritic Cells

  • Kim, Hyung Keun;Lee, Jae Joon;Lee, Jun Sik;Park, Yeong-Min;Yoon, Taek Rim
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.583-589
    • /
    • 2008
  • In the present study, we investigated whether rosmarinic acid, which has been suggested to exhibit anti-inflammatory properties, can suppress the expressions of monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-$1{\alpha}$ ($MIP-1{\alpha}$) via the MAPK pathway in LPS-stimulated bone marrow-derived dendritic cells (BMDCs) in the presence of GM-CSF and IL-4 in media. The effects of rosmarinic acid were investigated in BMDCs with respect to the following; cytotoxicity, surface molecule expression, dextran-FITC uptake, cell migration, chemokine gene expression, and the MAPK signaling pathway. Rosmarinic acid was found to significantly inhibit the expressions of CD80, CD86, MHC class I, and MHC class II in LPS-stimulated mature BMDCs, and rosmarinic acid-treated BMDCs were found to be highly efficient with regards to antigen capture via mannose receptor-mediated endocytosis. In addition, rosmarinic acid reduced cell migration by inducing the expression of a specific chemokine receptor on LPS-induced mature BMDCs. Rosmarinic acid also significantly reduced the expressions of MCP-1 and $MIP-1{\alpha}$ induced by LPS in BMDCs and inhibited LPS-induced activation of MAPK and the nuclear translocation of $NF-{\kappa}B$. These findings broaden current perspectives concerning our understanding of the immunopharmacological functions of rosmarinic acid, and have ramifications that concern the development of therapeutic drugs for the treatment of DC-related acute and chronic diseases.

Effects of Dietary Rice Bran Oil on Mitochondrial Respiration in M2-induced Bone Marrow-derived Macrophages (현미유가 생쥐의 골수로부터 M2로 유도한 대식세포의 미토콘드리아 호흡에 미치는 영향)

  • Lee, Sojung;Kim, Wooki
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.353-357
    • /
    • 2018
  • Previous studies have suggested that rice bran oil (RBO), an edible oil from the byproducts of rice milling, has anti-inflammatory effects in inflammation inducing macrophages, known as M1 subsets. Yet the effects of RBO on the counterpart M2 subsets, the "healing" macrophages, were poorly investigated to date. In this regard, recent studies on the molecular/cellular anti-inflammatory mechanisms of dietary components have demonstrated that mitochondrial respiration contributes to macrophage functioning. Therefore, the current study examined whether RBO regulates cytokine secretion by modulating mitochondrial metabolism in wound healing M2 subsets. Palm oil (PO), enriched with medium-chain fatty acids, served as a positive control. C57BL/6 mice were fed a diet containing either corn oil (CO), PO or RBO for 4 weeks, followed by purification of bone marrow-derived macrophages (BMDM) from their tibias and femurs. Cells were further polarized to M2-BMDM, and the expression of M2 marker (CD206) on cellular surfaces were not affected by dietary intervention. In addition, the secretion of anti-inflammatory cytokine (IL-10) in the culture supernatant was not affected by dietary lipids. Oxygen consumption rate, the indicator of mitochondrial respiration in M2-BMDM was not regulated by RBO intervention and PO treatment. Taken together, this study imply that RBO did not intervene both the regulation of inflammatory responses and mitochondrial respiration in M2 macrophages.

Augmented Osteoclastogenesis from Committed Osteoclast Precursors by Periodontopathic Bacteria Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis (치주염 유발 세균 Aggregatibacter actinomycetemcomitans와 Porphyromonas gingivalis에 의한 committed osteoclast precursor 분화 증가)

  • Park, Ok-Jin;Kwon, Yeongkag;Yun, Cheol-Heui;Han, Seung Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.557-562
    • /
    • 2016
  • Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis are gram-negative bacteria frequently found in lesions from patients with periodontitis manifesting alveolar bone loss. Lipopolysaccharides are a major virulence factor of gram-negative bacteria. Bone resorption is known to be regulated by bacteria and their virulence factors. In the present study, we investigated the effects of A. actinomycetemcomitans and P. gingivalis on bone resorption. Heat-killed A. actinomycetemcomitans (HKAa) and heatkilled P. gingivalis (HKPg) induced bone loss in the femurs of mice after intraperitoneal administration. HKAa and HKPg augmented the differentiation of committed osteoclast precursors into osteoclasts, while they inhibited the differentiation of bone marrow-derived macrophages into osteoclasts. Concordant with the effects of the heat-killed whole cells, LPS purified from A. actinomycetemcomitans and P. gingivalis also augmented osteoclast differentiation from committed osteoclast precursors but attenuated it from bone marrow-derived macrophages. Taken together, these results suggest that the whole cells and lipopolysaccharides of A. actinomycetemcomitans and P. gingivalis induce the differentiation of committed osteoclast precursors into osteoclasts, potentially contributing to bone resorption in vivo.