• 제목/요약/키워드: Bone Defect

검색결과 909건 처리시간 0.03초

자가 비골이식술을 이용한 족관절 유합술: 2예 보고 (Ankle Arthrodesis Using Auto Fibula Bone Graft: Two Cases Report)

  • 이창호;윤원식;오진록
    • 대한족부족관절학회지
    • /
    • 제15권2호
    • /
    • pp.102-106
    • /
    • 2011
  • Recently, development and improvement in joint replacement therapy, the need for arthrodesis has been decreasing. However, result of joint replacement is not always satisfactory, and most cases are rather indicative to ankle arthrodesis than ankle replacement. Often, ankle arthrodesis can be more beneficial salvage method to treat cases with failure in joint replacement therapy, talar avascular necrosis with massive bone defect, talus fracture with severe comminution and bone defect and ankle dislocation. In cases with large bone defect that need to be treated with ankle arthrodesis using internal fixation, it is difficult to fill the defect with conventional auto-iliac bone or all-bone graft. Thus, we make a report on our experience in treating 2 cases with ankle arthrodesis using auto-fibular bone graft and plate fixation.

The effects of voltage of x-ray tube on fractal dimension and anisotropy of diagnostic image

  • Baik, Jee-Seon;Lee, Sam-Sun;Park, Kwan-Soo;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제37권4호
    • /
    • pp.211-215
    • /
    • 2007
  • Purpose: The purpose of this study was to evaluate the effect of the kV on fractal dimension of trabecular bone in digital radiographs. Materials and Methods: 16 bone cores were obtained from patients who had taken partial resection of tibia due to accidents. Each bone core along with an aluminum step wedge was radiographed with an occlusal film at 0.08 sec and with the constant film-focus distance (32 cm). All radiographs were acquired at 60, 75, and 90 kV. A rectangular ROI was drawn at medial part, distal part, and the bone defect area of each bone core image according to each kV. The directional fractal dimension was measured using Fourier Transform spectrum, and the anisotropy was obtained using directional fractal dimension. The values were compared by the repeated measures ANOVA. Results : The fractal dimensions increased along with kV increase (p < 0.05). The anisotropy measurements did not show statistically significant difference according to kV change. The fractal dimensions of the bone defect areas of the bone cores have low values contrast to the non-defect areas of the bone cores. The anisotropy measurements of the bone defect areas were lower than those of the non-defect areas of the bone cores, but not statistically significant. Conclusion: Fractal analysis can notice a difference of a change of voltage of x-ray tube and bone defect or not. And anisotropy of a trabecular bone is coherent even with change of the voltage of x-ray tube or defecting off a part of bone.

  • PDF

Promoted Bone Regeneration by Nanoparticle-Type Sustained Release System of BMP-2 in Hydrogel

  • Chung, Yong-Il;Lee, Seung-Young;Tae, Gi-Yoong;Ahn, Kang-Min;Jeon, Seung-Ho;Lee, Jong-Ho
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.264-264
    • /
    • 2006
  • The nanoparticle-hydrogel complex as a new bone defect replacement matrix, which is composed of the nanoparticles for the sustained release of BMP and the hydrogel for filling the bone defect site and playing a role as a matrix where new bone can grow, is presented. In vivo evaluation of bone formation was characterized by soft X-ray, MT staining, and calcium assay, based on the rat calvarial critical size defect model. The effective bone regeneration was achieved by the BMP-2 loaded nanoparticles in fibrin gel, compare to bare fibrin gel, the nanoparticle-fibrin gel complex without BMP-2, or the BMP-2 in fibrin gel, in terms of the new bone area and the gray level in X-ray, the bone marrow are, and the calcium content in the initial defect site. These findings suggest that the BMP-2 loaded nanoparticle-fibrin gel complex can a promising candidate for a new bone defect replacement matrix.

  • PDF

머리뼈 붙음증에서의의 자가 두개 미립뼈 이식술 (Autogenous Calvarial Particulate Bone Grafting in Craniosynostosis)

  • 정승문
    • Archives of Plastic Surgery
    • /
    • 제38권3호
    • /
    • pp.222-227
    • /
    • 2011
  • Purpose: Autogenous particulate bone grafting is a type of autogenous bone graft that consists of small particles of cortical and cancellous bone. Autogenous particulate bone grafting has been used for calvarial bone defect after calvarial defect of craniosynostosis and prevention of temporal depression after fronto-orbital advancement. The results were followed up and studied for effectiveness of autogenous calvarial particulate bone grafting. Methods: Cranial vault remodeling and fronto-orbital advancement was performed for six craniosynostosis patient from August 2005 to October 2007. Autogenous particulate bone grafting was harvested from endocortex of separated cranial vault and if insufficient, from extocortex of occipital region using Hudson brace & D'Errico craniotomy bit and was grafted on the calvarial bone defect of cranial vault and temporal hollow. Fibrin glues were added to the harvested particulated bone for adherence and shaping of paticles. Results: Autogenous particulate bone grafting was followed-up at least longer than I year. The calvarial bony defects following primary cranial remodeling were successfully covered and postoperative temporal depressions after fronto-orbital advancement were also well prevented by grafted particulated bone. Conclusion: Autogenous calvarial particulate bone graft can be harvested in infants and young children with minimal donor site morbidity. It effectively heals cranial defects in children and during fronto-orbital advancement reduces the prevalence of osseous defects independent of patient age. It's easy and effective method of reconstruction of calvarial defect.

생비골 이식술을 이용한 장골 골결손의 재건 (Reconstruction of Long Bone Defect with Vascularized Fibular Graft)

  • 조창현;전철우;송원재;김성후;정덕환
    • Archives of Reconstructive Microsurgery
    • /
    • 제15권1호
    • /
    • pp.26-32
    • /
    • 2006
  • Purpose: The purpose of this study was to evaluate the effectiveness of limb reconstruction and functional recovery using vascularized fibular graft in the treatment of extensive bone defect of long bone caused by various diseases. Materials and Methods: From september 1995 to March 2005, 21 patients with segmental bone defects were managed with vascularized fibular graft: 13 males and 8 females, aged 39 years on average (range, $8{\sim}65\;years$). The reconstructed site was the humerus in 9 patients, the femur in 5, the tibia in 4 and the forearm bone in 3. The length of bone defect ranged from $8{\sim}17\;cm$. Results: Twenty grafts were successful. The mean period to obtain radiographic bone union was 5.7 months on average. Conclusion: Fibular grafts allow the use of a segment of diaphyseal bone and of sufficient length to reconstruct most skeletal defects of the long bone. The vascularized fibular graft is indicated in patients with intractable nonunions where conventional bone grafting has failed or large bone defects.

  • PDF

자가 머리뼈 이식 후 뼈결손부의 면적 변화 (A Size Change of Bone Defect Area after Autogenous Calvarial Bone Graft)

  • 현경배;김동석;유선국;김희중;김용욱;박병윤
    • Archives of Plastic Surgery
    • /
    • 제32권4호
    • /
    • pp.467-473
    • /
    • 2005
  • Calvarial bone grafting in craniomaxillofacial trauma and facial reconstructive surgery is now widely recognized and accepted as a standard procedure. One of the commonly reported problems of calvarial bone graft is the contour defect caused by partial resorption of the graft. But, there are few reports that discuss the fate of the calvarial bone graft based on the quantitative data. In this article, the changes of grafted calvarial bone were evaluated using 3-dimensional computed tomography(CT). 9 patients were observed with the CT scans at 2mm thickness immediately after operation and at the time of last follow-up. The area of the bone defect was segmented on the 3-dimensional CT image and calculated by AnalyzeDirect 5.0 software. The immediate postoperative bone defect area of the recipient site and the donor site were $612.9mm^2$ and $441.5mm^2$, respectively, which became $1028.1mm^2$ and $268.8mm^2$, respectively at the last follow-up. In conclusion, the bone defect area was less increased on the donor site of calvarial bone graft than on the recipient site. And the CT scan is a valuable imaging method to assess and follow-up the clinical outcome of calvarial bone grafting.

Development of an experimental model for radiation-induced inhibition of cranial bone regeneration

  • Jung, Hong-Moon;Lee, Jeong-Eun;Lee, Seoung-Jun;Lee, Jung-Tae;Kwon, Tae-Yub;Kwon, Tae-Geon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • 제40권
    • /
    • pp.34.1-34.8
    • /
    • 2018
  • Background: Radiation therapy is widely employed in the treatment of head and neck cancer. Adverse effects of therapeutic irradiation include delayed bone healing after dental extraction or impaired bone regeneration at the irradiated bony defect. Development of a reliable experimental model may be beneficial to study tissue regeneration in the irradiated field. The current study aimed to develop a relevant animal model of post-radiation cranial bone defect. Methods: A lead shielding block was designed for selective external irradiation of the mouse calvaria. Critical-size calvarial defect was created 2 weeks after the irradiation. The defect was filled with a collagen scaffold, with or without incorporation of bone morphogenetic protein 2 (BMP-2) (1 ㎍/ml). The non-irradiated mice treated with or without BMP-2-included scaffold served as control. Four weeks after the surgery, the specimens were harvested and the degree of bone formation was evaluated by histological and radiographical examinations. Results: BMP-2-treated scaffold yielded significant bone regeneration in the mice calvarial defects. However, a single fraction of external irradiation was observed to eliminate the bone regeneration capacity of the BMP-2-incorporated scaffold without influencing the survival of the animals. Conclusion: The current study established an efficient model for post-radiation cranial bone regeneration and can be applied for evaluating the robust bone formation system using various chemokines or agents in unfavorable, demanding radiation-related bone defect models.

실험적 골 병소에 대한 콘빔형전산화단층영상과 초음파영상의 비교 (Comparison of cone-beam computed tomography and ultrasonography on experimental bone lesion)

  • 김민성;박철우;김규태;최용석;황의환
    • Imaging Science in Dentistry
    • /
    • 제40권3호
    • /
    • pp.137-142
    • /
    • 2010
  • Purpose : This study was performed to evaluate the diagnostic ability of ultrasonography in detection of bone defects and new bone formation. Materials and Methods : Experimental bony defects were prepared on the parietal bone samples acquired from 3.5 kg New Zealand male rabbits. The defects were evaluated using ultrasonography and CBCT, and examined histologically at interval of 1, 3, 6, and 8 weeks. Results : Ultrasonograph demonstrated hyperechogenicity in the defect area at 3 weeks and broadened hyperechogenicity from the margin of bone defect at 6 and 8 weeks due to new bone formation. On the CBCT images, new bone formation was first observed at 3 weeks around the margin of the defect, and showed gradually increase at 6 and 8 weeks. Histologic findings revealed existence of the fibroblasts and fibrous connective tissue with abundant capillary vessels only at 1 week, but osteoid tissue and newly formed trabecular bone at 3 weeks. Bone remodeling in the defect area was observed at 6 weeks and increased calcification and dense trabecular bone formation was observed at 8 weeks. Conclusions : Ultrasonograph proved to be a very useful diagnostic tool in detecting the bony defect and new bone formation. Additionally, ultrasonography provided valuable information regarding the blood supply around the defect area.

LiF-maleic acid 첨가 calcium aluminate 골시멘트 및 CA-PMMA 복합 골시멘트가 백서 두개골 결손부 치유에 미치는 영향 (The effect of LiF-maleic acid added calcium aluminate hone cement & CA-PMMA composite bone cement on the healing of calvarial defect6))

  • 신정아;윤정호;오승한;백정원;최세영;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제32권4호
    • /
    • pp.753-767
    • /
    • 2002
  • The purpose of this study was to evaluate histologically the effect of LiF-maleic acid added calcium aluminate(LM-CA) bone cement & CA-PMMA composite bone cement on the healing of calvarial defect in Sprague-Dawley rats. The critical size defects were surgically produced in the calvarial bone using the 8mm trephine bur. The rats were divided in three groups : In the control group, nothing was applied into the defect of each rat. LM-CA bone cement was implanted in the experimental group 1 and CA-PMMA composite bone cement was implanted in the experimental group 2. Rats were sacrificed at 2, 8 weeks after surgical procedure. The specimens were examined by histologic analysis, especially about the bone-cement interface and the response of surrounding tissue. The results are as follows; 1. In the control group, inflammatory infiltration was observed at 2 weeks. At 8 weeks, periosteum and duramater were continuously joined together in the defect area. But the center of defect area was filled up with the loose connective tissue. 2. In the experimental group 1, the bonding between implanted bone cement and the existing bone was seen, which more increased in 8 weeks than 2 weeks. Inflammatory infiltration and the dispersion of implanted bone cement particles were seen in both 2 weeks and 8 weeks. 3. In the experimental group 2, implanted bone itself had a dimensional stability and no bonding between implanted bone cement and the existing bone was seen in both 2 weeks and 8 weeks. Implanted bone cement was encapsulated by fibrous connective tissue. In addition, inflammatory infiltration was seen around implanted bone cement. On the basis of these results, when LM-CA bone cement or CA-PMMA composite bone cement was implanted in rat calvarial defect, LM-CA bone cement can be used as a bioactive bone graft material due to ability of bonding to the existing bone and CA-PMMA can be used as a graft material for augmentation of bone-volume due to dimensional stability.

골연하 결손부에서 조직유도재생술의 장기적 방사선학적 변화 관찰 (Long-term radiographic evaluation of GTR treatment in intrabony defect)

  • 최미혜;박진우;서조영;이재목
    • Journal of Periodontal and Implant Science
    • /
    • 제37권2호
    • /
    • pp.181-192
    • /
    • 2007
  • Periodontal surgery as part of the treatment of periodontal disease is mainly performed 1) to gain access to diseased areas for adequate cleaning; 2) to achieve pocket reduction or elimination; and 3) to restore the periodontal tissues lost through the disease; i.e., a new attachment formation of periodontal regeneration. To accomplish the latter, often referred to as the ultimate goal of periodontal therapy, a number of surgical procedures have been advocated throughout the years. Clinical studies have demonstrated that considerable gain of clinical attachment and bone can be achieved following guided tissue regeneration (GTR) therapy of intrabony defects. The aim of this study was to analyse the radiographic bone changes 2-year after GTR using a bone graft material and nonresorbable membrane. Patients attending the department of periodontics of Kyungpook National University Hospital were studied. Patients had clinical and radiographic evidence of intrabony defect(s), 33 sites of 30 patients aged 32 to 56 (mean age 45.6) were treated by GTR with a bone graft material and nonresorbable membrane. Baseline and 2-year follow-up radiographs were collected and evaluated for this study. Radiographic assessment includes a bone fill, bone crest change, defect resolution, and % of defect resolution. Pre- and post-treatment differences between variables (maxilla and mandible, defect depth, defect angle, bone graft materials) using the paired t-test were examined. We observed $2.86{\pm}1,87mm$ of bone fill, $065{\pm}0.79mm$ of crestal resorption, $3.49{\pm}2.11mm$ of defect resolution, and $44.42{\pm}19.51%$ of percentage of defect resolution. Mandible, deeper initial defect depth, narrower initial defect angle showed greater bone fill, defect resolution, and % of defect resolution. But no difference was observed between xenograft and allograft. Outcome of GTR as a therapy of intrabony defect was better than other therapy, but herein, good oral hygiene maintenance as a anti-infective treatment and periodic recall check of patients are essential.