• Title/Summary/Keyword: Bonding wafer inspection

Search Result 9, Processing Time 0.035 seconds

Development of MEMS-based Micro Turbomachinery (MEMS-based 마이크로 터보기계의 개발)

  • Park, Kun-Joong;Min, Hong-Seok;Jeon, Byung-Sun;Song, Seung-Jin;Joo, Young-Chang;Min, Kyoung-Doug;You, Seung-Mun
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.169-174
    • /
    • 2001
  • This paper reports on the development of high aspect ratio structure and 3-D integrated process for MEMS-based micro gas turbines. To manufacture high aspect ratio structures, Deep Reactive Ion Etching (DRIE) process have been developed and optimized. Specially, in this study, structures with aspect ratios greater than 10 were fabricated. Also, wafer direct bonding and Infra-Red (IR) camera bonding inspection systems have been developed. Moreover, using glass/silicon wafer direct bonding, we optimized the 3-D integrated process.

  • PDF

Development of Wafer Bond Integrity Inspection System Based on Laser Transmittance

  • Jang, Dong-Young;Ahn, Hyo-Sok;Mehdi, Sajadieh.S.M.;Lim, Young-Hwan;Hong, Seok-Kee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • Among several critical topics in semiconductor fabrication technology, particles in addition to bonded surface contaminations are issues of great concerns. This study reports the development of a system which inspects wafer bond integrity by analyzing laser beam transmittance deviations and the variations of the intensity caused by the defect thickness. Since the speckling phenomenon exists inherently as long as the laser is used as an optical source and it degrades the inspection accuracy, speckle contrast is another obstacle to be conquered in this system. Consequently speckle contrast reduction methods were reviewed and among the all remedies have been established in the past 30 years the most adaptable solution for inline inspection system is applied. Simulation and subsequently design of experiments has been utilized to discover the best solution to improve irradiance distribution and detection accuracy. Comparison between simulation and experimental results has been done and it confirms an outstanding detection accuracy achievement. Bonded wafer inspection system has been developed and it is ready to be implemented in FAB in the near future.

SOI wafer formation by ion-cut process and its characterization (Ion-cut에 의한 SOI웨이퍼 제조 및 특성조사)

  • Woo H-J;Choi H-W;Bae Y-H;Choi W-B
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2005
  • The silicon-on-insulator (SOI) wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by SRIM simulation that 65keV proton implantation is required for a SOI wafer (200nm SOI, 400nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the $6\~9\times10^{16}\;H^+/cm^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. Direct wafer bonding is performed by joining two wafers together after creating hydrophilic surfaces by a modified RCA cleaning, and IR inspection is followed to ensure a void free bonding. The wafer splitting was accomplished by annealing at the predetermined optimum condition, and high temperature annealing was then performed at $1,100^{\circ}C$ for 60 minutes to stabilize the bonding interface. TEM observation revealed no detectable defect at the SOI structure, and the interface trap charge density at the upper interface of the BOX was measured to be low enough to keep 'thermal' quality.

Development of automatic die bonder system for semiconductor parts assembly (반도체 소자용 자동 die bonding system의 개발)

  • 변증남;오상록;서일홍;유범재;안태영;김재옥
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.353-359
    • /
    • 1988
  • In this paper, the design and implementation of a multi-processor based die bonder machine for the semiconductor will be described. This is a final research results carried out for two years from June, 1986 to July, 1988. The mechanical system consists of three subsystems such as bonding head module, wafer feeding module, and lead frame feeding module. The overall control system consists of the following three subsystems each of which employs a 16 bit microprocessor MC 68000 : (i) supervisory control system, (ii) visual recognition / inspection system and (iii) the display system. Specifically, the supervisory control system supervises the whole sequence of die bonder machine, performs a self-diagnostics while it controls the bonding head module according to the prespecified bonding cycle. The vision system recognizes the die to inspect the die quality and deviation / orientation of a die with respect to a reference position, while it controls the wafer feeding module. Finally, the display system performs a character display, image display ans various error messages to communicate with operator. Lead frame feeding module is controlled by this subsystem. It is reported that the proposed control system were applied to an engineering sample and tested in real-time, and the results are sucessful as an engineering sample phase.

  • PDF

A Study on Wafer-Level 3D Integration Including Wafer Bonding using Low-k Polymeric Adhesive (저유전체 고분자 접착 물질을 이용한 웨이퍼 본딩을 포함하는 웨이퍼 레벨 3차원 집적회로 구현에 관한 연구)

  • Kwon, Yongchai;Seok, Jongwon;Lu, Jian-Qiang;Cale, Timothy;Gutmann, Ronald
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.466-472
    • /
    • 2007
  • A technology platform for wafer-level three-dimensional integration circuits (3D-ICs) is presented, and that uses wafer bonding with low-k polymeric adhesives and Cu damascene inter-wafer interconnects. In this work, one of such technical platforms is explained and characterized using a test vehicle of inter-wafer 3D via-chain structures. Electrical and mechanical characterizations of the structure are performed using continuously connected 3D via-chains. Evaluation results of the wafer bonding, which is a necessary process for stacking the wafers and uses low-k dielectrics as polymeric adhesive, are also presented through the wafer bonding between a glass wafer and a silicon wafer. After wafer bonding, three evaluations are conducted; (1) the fraction of bonded area is measured through the optical inspection, (2) the qualitative bond strength test to inspect the separation of the bonded wafers is taken by a razor blade, and (3) the quantitative bond strength is measured by a four point bending. To date, benzocyclobutene (BCB), $Flare^{TM}$, methylsilsesquioxane (MSSQ) and parylene-N were considered as bonding adhesives. Of the candidates, BCB and $Flare^{TM}$ were determined as adhesives after screening tests. By comparing BCB and $Flare^{TM}$, it was deduced that BCB is better as a baseline adhesive. It was because although wafer pairs bonded using $Flare^{TM}$ has a higher bond strength than those using BCB, wafer pairs bonded using BCB is still higher than that at the interface between Cu and porous low-k interlevel dielectrics (ILD), indicating almost 100% of bonded area routinely.

Inspection method of BGA Ball Using 5-step Ring Illumination (5층 링 조명에 의한 BGA 볼의 검사 방법)

  • Kim, Jong Hyeong;Nguyen, Chanh D.Tr.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1115-1121
    • /
    • 2015
  • Fast inspection of solder ball bumps in ball grid array (BGA) is an important issue in the flip chip bonding technology. Particularly, semiconductor industry has required faster and more accurate inspection of micron-size solder bumps in flip chip bonding, as the density of balls increase dramatically. In this paper, we describe an inspection approach of BGA balls by using 5-step ring illumination device and normalized cross-correlation (NCC) method. The images of BGA ball by the illumination device show unique and distinguishable characteristic contours by their 3-D shapes, which are called as "iso-slope contours". Template images of reference ball samples can be produced artificially by the hybrid reflectance model and 3D data of balls. NCC values between test and template samples are very robust and reliable under well-structured condition. The 200 samples on real wafer are tested and show good practical feasibility of the proposed method.

Bonding Wafer Inspection Using Laser Beam Transmission Modeling (레이저빔 투과 모델링을 이용한 본딩 웨이퍼 검사)

  • Lim, Young-Hwan;Yang, Si-Eun;Jang, Dong-Young;Hong, Suk-Ki
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.555-556
    • /
    • 2008
  • 본 연구에서는 레이저빔 투과를 이용한 본딩 웨이퍼 검사 방법을 제안하고 검사 장치를 설계 구현하였다. 1064nm 파장에서의 정상웨이퍼를 일정한 비율로 투과 하였다. 본딩 불량으로 인한 웨이퍼의 기공은 두께에 따라 투과율이 현저하게 변화하여 기공 부분을 검출하였다. 이러한 기공은 두께의 변화가 있으며 광량의 변화하는 부분이 에어갭으로 인식 카메라로 쉽게 구분이 가능하였다.

  • PDF

Wafer level vertical interconnection method for microcolumn array (마이크로컬럼 어레이에 적용 가능한 웨이퍼단위의 수직 배선 방법)

  • Han, Chang-Ho;Kim, Hyeon-Cheol;Kang, Moon-Koo;Chun, Kuk-Jin
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.793-796
    • /
    • 2005
  • In this paper, we propose a method which can improve uniformity of a miniaturized electron beam array for inspection of very small pattern with high speed using vertical interconnection. This method enables the individual control of columns so that it can reduce the deviation of beam current, beam size, scan range and so on. The test device that used vertical interconnection method was fabricated by multiple wafer bonding and metal reflow. Two silicon and one glass wafers were bonded and metal interconnection by melting of electroplated AuSn was performed. The contact resistance was under $10{\Omega}$.

  • PDF