• Title/Summary/Keyword: Bonding efficiency

Search Result 198, Processing Time 0.022 seconds

DFT Study of Bis(Crown-Ether) Analogue of Troger’s Base Complexed with Bisammonium Ions: Hydrogen Bonds

  • Kim, Kwan-Ho;Choe, Jong-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.11
    • /
    • pp.1737-1740
    • /
    • 2006
  • The optimized structures and complexation energies of bis(18-crown-6-ether) analogue (2) of Trgers base (1) with a series of primary alkylbisammonium ions have been calculated by DFT B3LYP/6-31G(d,p) method. The calculated complexation efficiency (-142.84 kcal/mol) of 2 for butane-1,4-diylbisammonium guest is better than twice of the value (-61.40 kcal/mol) for butylammonium ion. The multiple hydrogen-bond abilities for the complexes are described as the function of the length of the alkyl substituents of the bisammonium guests with normal-alkyl chain [$-(CH_2)_{n-}$, n = 4-8]. The longer bisammonium guest shows the stronger hydrogen-bonding characterizations (the distance and the quasi-linear angle of the N-H…O) to the host 2 than the shorter bisammonium ions. These calculated results agree with the experimental data of the complexation of 2 with bisammonium salts ([$NH_3(CH_2)_nNH_3$] $Cl_2$).

Study on Metal/Diamond Binary Composite Coatings by Cold Spray

  • Kim, H.J.;Jung, D.H.;Jang, J.H.;Lee, C.H.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.240-241
    • /
    • 2006
  • Metal/diamond binary composite coatings on Al substrate without grit blasting were deposited by cold spray process with insitu powder preheating. Microstructural characterization of the as-sprayed coatings with different diamond size, strength and with/without Ti coating on diamond was carried out by OM and SEM. The assessment of basic properties such as tensile bond strength and hardness of the coatings, and the deposition efficiency was also carried out. Particular attention on the composite coatings was on the diamond fracture phenomenon during the cold spray deposition and the interface bonding between the diamond and the Fe-based metal matrix.

  • PDF

An Experiment Study on the Safety of Exterior tile According to Setting Method. (외장타일의 시공방법에 따른 안정성에 관한 실험적 연구)

  • 김동준
    • Journal of the Korean Society of Safety
    • /
    • v.2 no.3
    • /
    • pp.13-20
    • /
    • 1987
  • Today, the conception of building architecture is changing the conception that it is a kind of product and the operator of construction try to produce excellent building through developing efficiency and materials of building component This study improves the problematic point of the exterior tile setting, through making an experiment on the method of it and purposes doing to do the exterior tile setting of good quality as it selects out of the most conformable the method. The experimental materials choose the tile of 60$\times$108 mm size which are using frequently in the exterior tile setting and ready mixed compound for bonding mortar. The methods of tile Betting utilize the method of the tile setting and laying, the method of the tile improved setting and laying, the method of the pressing adhesion, the method of the improved pressing adhesion and the method of setting adherent (the method of VIBRATOR).

  • PDF

Heat Generation and Machining Accuracy According to Material for Ultra-Precision Machining (차량 경량화를 위한 이종소재 접합 연구)

  • Lee, Gyung-Il;Kim, Jae-Yeol;Lee, Dong-Gi
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.130-135
    • /
    • 2018
  • Currently the automobile market is developing eco-friendly vehicles in order to cope with fuel efficiency regulations. Many studies have been conducted to improve travel performance and fuel economy of the environment-friendly vehicles, and vehicle manufacturers study how to manufacture light-weight vehicles for improving fuel economy for both existing vehicles and environment-friendly vehicles. Exemplary light-weight vehicle technologies include optimal design of vehicle body structure which is a light-weight vehicle method by changing component shapes or layout to optimize the vehicle body structure and the new process technology for using new light-weight and very strong materials Various studies.

Nano-cleaning of EUV Mask Using Amphoterically Electrolyzed Ion Water (화학양면성의 전해이온수를 이용한 극자외선 마스크의 나노세정)

  • Ryoo, Kun-kul;Jung, Youn-won;Choi, In-sik;Kim, Hyung-won;Choi, Byung-sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.34-42
    • /
    • 2021
  • Recent cleaning technologies of mask in extremely ultraviolet semiconductor processes were reviewed, focused on newly developed issues such as particle size determination or hydrocarbon and tin contaminations. In detail, critical particle size was defined and proposed for mask cleaning where nanosized particles and its various shapes would result in surface atomic ratio increase vigorously. A new cleaning model also was proposed with amphoteric behavior of electrolytically ionized water which had already shown excellent particle removing efficiency. Having its non-equilibrium and amphoteric properties, electrolyzed ion water seemed to oxidize contaminant surface selectively in nano-scale and then to lift up oxidized ones from mask surface very effectively. This assumption should be further investigated in future in junction with hydrogen bonding and cluster of water molecules.

Synthesis, Structure and Biological Properties of a Novel Copper (II) Supramolecular Compound Based on 1,2,4-Triazoles Derivatives

  • Qiu, Guang-Mei;Wang, Cui-Juan;Zhang, Ya-Jun;Huang, Shuai;Liu, Xiao-Lei;Zhang, Bing-Jun;Zhou, Xian-Li
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2603-2608
    • /
    • 2012
  • A novel mononuclear supramolecule of copper(II) has been synthesized with Ippyt ligand (Ippyt=3-(4'-imidazole phenyl)-5-(pyrid-2''-yl)-1,2,4-triazole) (1). Compound 1, namely [$Cu(Ippyt)_2(H_2O)_2$], has been characterized by single-crystal X-ray diffraction, IR spectrum, elemental analysis and thermogravimetric analysis. Structure determination reveals that the elongated-octahedral geometry is formed in the vicinity of the copper (II) atom being coordinated by four nitrogen atoms from two Ippyt ligands occupying the equatorial position and two oxygen atoms from two coordinated water molecules in the axial position, which together form the $N_4O_2$ donor set. Hydrogen bonding interactions between nitrogen and oxygen atoms result in the set up of a supramolecular network architecture. Biological properties including antibacterial activity and superoxide dismutase (SOD) mimetic activity of compound 1 have been investigated by agar diffusion method and the modified Marklund method, respectively. The results indicate that compound 1 exhibits a stronger antibacterial efficiency than the parent ligand and it also has a certain radical-scavenging activity.

A Study on the Computational Design of Static Mixer and Mixing Characteristics of Liquid Silicon Rubber using Fluidic Analysis for LED Encapsulation (LED Encapsulation을 위한 스태틱 믹서의 전산 설계 및 유동해석을 이용한 액상 실리콘의 혼합 특성에 대한 연구)

  • Cho, Yong-Kyu;Ha, Seok-Jae;Huxiao, Huxiao;Cho, Myeong-Woo;Choi, Jong Myeong;Hong, Seung-Min
    • Design & Manufacturing
    • /
    • v.7 no.1
    • /
    • pp.55-59
    • /
    • 2013
  • A Light Emitting Diode(LED) is a semiconductor device which converts electricity into light. LEDs are widely used in a field of illumination, LCD(Liquid Crystal Display) backlight, mobile signals because they have several merits, such as low power consumption, long lifetime, high brightness, fast response, environment friendly. In general, LEDs production does die bonding and wire bonding on board, and do silicon and phosphor dispensing to protect LED chip and improve brightness. Then lens molding process is performed using mixed liquid silicon rubber(LSR) by resin and hardener. A mixture of resin and hardener affect the optical characteristics of the LED lens. In this paper, computational design of static mixer was performed for mixing of liquid silicon. To evaluate characteristic of mixing efficiency, finite element model of static mixer was generated, and fluidic analysis was performed according to length of mixing element. Finally, optimal condition of length of mixing element was applied to static mixer from result of fluidic analysis.

  • PDF

IEEE 802.22 WG에서의 CR응용: WRAN MAC설계

  • Go Gwang-Jin;Hwang Seong-Hyeon;Song Myeong-Seon;Kim Chang-Ju;Gang Beop-Ju
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.2 s.58
    • /
    • pp.38-49
    • /
    • 2006
  • In order to increase the spectrum efficiency, recently, there is the number of studies for CR technology. For instance, IEEE 802.22 WRAN(Wireless Regional Area Network) WG considered the CR technology as a solution of WRAN system to serve the high speed internet service(1.5 Mbps down stream and 384 kbps up stream) in 100 km overall coverage and 54 MHz-746 MHz band. Basically, in MAC point of view, the WRAN system have been standardizing based on the IEEE 802.16 MAC layer features such as Data transmission method, QoS provision and Bandwidth request schemes. Additionally, the WRAN system further include CR nature functions such as incumbent user protection, self coexistence which would be importantly considered. Also, the inherent WRAN functions are added such as channel bonding and fractional bandwidth usage. This paper mainly explained frame structure, IU protection, self coexistence which are key functions of WRAN system. Finally, in this paper, we expressed a prospect of IEEE 802.22 WRAN standardization.

Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced concrete

  • Meraji, Leila;Afshin, Hasan;Abedi, Karim
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.159-172
    • /
    • 2019
  • This paper presents an investigation into the flexural behavior of reinforced concrete (RC) beams retrofitted by ultra-high performance fiber-reinforced concrete (UHPFRC) layers. The experimental study has been conducted in two parts. In the first part, four methods of retrofitting with UHPFRC layers in both the up and down sides of the beams have been proposed and their efficiency in the bonding of the normal concrete and ultra-high performance fiber-reinforced concrete has been discussed. The results showed that using the grooving method and the pre-casted UHPFRC layers in comparison with the sandblasting method and the cast-in-place UHPFRC layers leads to increase the load carrying capacity and the energy absorption capacity and causes high bond strength between two concretes. In the second part of the experimental study, the tests have been conducted on the beams with single UHPFRC layer in the down side and in the up side, using the effective retrofitting method chosen from the first part. The results are compared with those of non-retrofitted beam and the results of the first part of experimental study. The results showed that the retrofitted beam with two UHPFRC layers in the up and down sides has the highest energy absorption and load carrying capacity. A finite element analysis was applied to prediction the flexural behavior of the composite beams. A good agreement was achieved between the finite element and experimental results. Finally, a parametric study was carried out on full-scale retrofitted beams. The results indicated that in all retrofitted beams with UHPFRC in single and two sides, increasing of the UHPFRC layer thickness causes the load carrying capacity to be increased. Also, increases of the normal concrete compressive strength improved the cracking load of the beams.

Terminal Configuration and Growth Mechanism of III-V on Si-Based Tandem Solar Cell: A Review

  • Alamgeer;Muhammad Quddamah Khokhar;Muhammad Aleem Zahid;Hasnain Yousuf;Seungyong Han;Yifan Hu;Youngkuk Kim;Suresh Kumar Dhungel;Junsin Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.442-453
    • /
    • 2023
  • Tandem or multijunction solar cells (MJSCs) can convert sunlight into electricity with higher efficiency (η) than single junction solar cells (SJSCs) by dividing the solar irradiance over sub-cells having distinct bandgaps. The efficiencies of various common SJSC materials are close to the edge of their theoretical efficiency and hence there is a tremendous growing interest in utilizing the tandem/multijunction technique. Recently, III-V materials integration on a silicon substrate has been broadly investigated in the development of III-V on Si tandem solar cells. Numerous growth techniques such as heteroepitaxial growth, wafer bonding, and mechanical stacking are crucial for better understanding of high-quality III-V epitaxial layers on Si. As the choice of growth method and substrate selection can significantly impact the quality and performance of the resulting tandem cell and the terminal configuration exhibit a vital role in the overall proficiency. Parallel and Series-connected configurations have been studied, each with its advantage and disadvantages depending on the application and cell configuration. The optimization of both growth mechanisms and terminal configurations is necessary to further improve efficiency and lessen the cost of III-V on Si tandem solar cells. In this review article, we present an overview of the growth mechanisms and terminal configurations with the areas of research that are crucial for the commercialization of III-V on Si tandem solar cells.