References
- ABAQUS Analysis User's Manual (2014), Version 6.14, Dassault Systems Simulia Corp., Providence, RI, USA.
- ACI 318M-14 (2014), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
- Al-Osta, M.A., Isa, M.N., Baluch, M.H. and Rahman, M.K. (2017), "Flexural behavior of reinforced concrete beams strengthened with ultra-high performance fiber reinforced concrete", Constr. Build. Mater., 134, 279-296. https://doi.org/10.1016/j.conbuildmat.2016.12.094.
- ASTM C39 (2015), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International,West Conshohocken, PA, USA.
- ASTM C496 (2011), Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International,West Conshohocken, PA, USA.
- Bonneau, O., Lachemi, M., Dallaire, E., Dugat, J. and Aitcin, P.C. (1997), "Mechanical properties and durability of two industrial reactive powder concretes", ACI Mater. J., 94, 286-290.
- Chan, Y.W. and Chu, S.H. (2004), "Effect of silica fume on steel fiber bond characteristics in reactive powder concrete", Cement Concrete Res., 34(7), 1167-1172. https://doi.org/10.1016/j.cemconres.2003.12.023.
- Cheyrezy, M., Maret, V. and Frouin, L. (1995), "Microstructural analysis of RPC (reactive powder concrete)", Cement Concrete Res., 25(7), 1491-1500. https://doi.org/10.1016/0008-8846(95)00143-Z.
- Cwirzen, A., Penttala, V. and Vornanen, C. (2008), "Reactive powder based concretes: Mechanical properties, durability and hybrid use with OPC", Cement Concrete Res., 38(10), 1217-1226. https://doi.org/10.1016/j.cemconres.2008.03.013.
- Dupont, D. and Vandewalle, L. (2005), "Distribution of steel fibers in rectangular sections", Cement Concrete Compos., 27(3), 391-398. https://doi.org/10.1016/j.cemconcomp.2004.03.005.
- Garas, V.Y., Kurtis, K.E. and Kahn, L.F. (2012), "Creep of UHPC in tension and compression: effect of thermal treatment", Cement Concrete Compos., 34(4), 493-502. https://doi.org/10.1016/j.cemconcomp.2011.12.002.
- Graybeal, B. and Baby, F. (2013), "Development of a direct tension test method for UHPFRC", ACI Mater. J., 110(2), 177-186.
- Habel, K., Denarie, E. and Bruhwiler, E. (2007), "Experimental investigation of composite ultra-high performance fiberreinforced concrete and conventional concrete members", ACI Struct. J., 104(1), 10-20.
- Hognestad, E. (1951), "Study of combined bending and axial load in reinforced concrete members", University of Illinois at Urbana Champaign, College of Engineering, Engineering Experiment Station.
- Hussein, L. and Amleh, L. (2015), "Structural behavior of ultrahigh performance fiber reinforced concrete-normal strength concrete or high strength concrete composite members", Constr. Build. Mater., 93, 1105-1116. https://doi.org/10.1016/j.conbuildmat.2015.05.030.
- Jandaghi Alaee, F. and Karihaloo, B.L. (2003), "Retrofitting of reinforced concrete beams with CARDIFRC", J. Compos. Constr., 7, 174-186. https://doi.org/10.1061/(ASCE)1090-0268(2003)7:3(174).
- Kang, S.T., Lee, Y. and Park, Y.D. (2010), "Tensile fracture properties of an Ultra High Performance Fiber Reinforced Concrete (UHPFRC) with steel fiber", Compos. Struct., 92(1), 61-71. https://doi.org/10.1016/j.compstruct.2009.06.012.
- Kim, D.J., Park, S.H. and Ryu, G.S. (2011), "Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers", Constr. Build. Mater., 25(11), 4144-4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051.
- Lai, J. and Sun, W. (2010), "Dynamic tensile behaviour of reactive powder concrete by Hopkinson bar experiments and numerical simulation", Comput. Concrete, 7(1), 83-86. https://doi.org/10.12989/cac.2010.7.1.083.
- Lampropoulos, A.P., Paschalis, S.A., Tsioulou, O.T. and Dritsos, S.E. (2016), "Strengthening of reinforced concrete beams using ultra high performance fiber reinforced concrete (UHPFRC)", Eng. Struct., 106, 370-384. https://doi.org/10.1016/j.engstruct.2015.10.042.
- Mohammed, T.J., Abu Bakar, B.H. and Bunnori, N.M. (2015a), "Strengthening of reinforced concrete beams subjected to torsion with UHPFC composites", Struct. Eng. Mech., 56(1), 123-136. https://doi.org/10.12989/sem.2015.56.1.123.
- Mohammed, T.J., Abu Bakar, B.H., Bunnori, N.M. and Ibraheem, O.F. (2015b), "Finite element analysis of longitudinal reinforcement beams with UHPFC under torsion", Comput. Concrete, 16(1), 1-16. https://doi.org/10.12989/cac.2015.16.1.001.
- Murthy, A.R., Karihaloo, B.L., Rani, P.V. and Priya, D.S. (2018), "Fatigue behaviour of damaged RC beams strengthened with ultra high performance fiber reinforced concrete", Int. J. Fatig, 116, 659-668. https://doi.org/10.1016/j.ijfatigue.2018.06.046.
- Murthy, R., Aravindan, M. and Ganesh, P. (2018), "Prediction of flexural behaviour of RC beams strengthened with ultra high performance fiber reinforced concrete", Struct. Eng. Mech., 65(3), 315-325. https://doi.org/10.12989/sem.2018.65.3.315.
- Nematzadeh, M. and Poorhosein, R. (2017), "Estimating properties of ultra-high performance fiber-reinforced concrete containing hybrid fibers using UPV", Comput. Concrete, 20(4), 491-502. https://doi.org/10.12989/cac.2017.20.4.491.
- Noshiravani, T. and Bruhwiler, E. (2013), "Experimental investigation on reinforced ultra-high-performance fiberreinforced concrete composite beams subjected to combined bending and shear", ACI Struct. J., 110(2), 251-62.
- Park, S.H., Kim, D.J., Ryu, G.S. and Koh, K.T. (2012), "Tensile behavior of ultra high performance hybrid fiber reinforced concrete", Cement Concrete Compos., 34(2), 172-184. https://doi.org/10.1016/j.cemconcomp.2011.09.009.
- Poorhosein, R. and Nematzadeh, M. (2018), "Mechanical behavior of hybrid steel-PVA fibers reinforced reactive powder concrete", Comput. Concrete, 21(2), 167-179. https://doi.org/10.12989/cac.2018.21.2.167.
- Qian, C.X. and Stroeven, P. (2000), "Development of hybrid polypropylene-steel fiber reinforced concrete", Cement Concrete Res., 30(1), 63-69. https://doi.org/10.1016/S0008-8846(99)00202-1.
- Rahdar, H.A. and Ghalehnovi, M. (2016), "Post-cracking behavior of UHPC on the concrete members reinforced by steel rebar", Comput. Concrete, 18(1), 139-154. https://doi.org/10.12989/cac.2016.18.1.139.
- Richard, P. and Cheyrezy, M. (1995), "Composition of reactive powder concretes", Cement Concrete Res., 25(7), 1501-1511. https://doi.org/10.1016/0008-8846(95)00144-2.
- Roux, N., Andrade, C. and Sanjuan, M.A. (1996), "Experimental study of durability of reactive powder concretes", J. Mater. Civil Eng., 8(1), 1-6. https://doi.org/10.1061/(ASCE)0899-1561(1996)8:1(1)
- Safdar, M., Matsumoto, T. and Kakuma, K. (2016), "Flexural behavior of reinforced concrete beams repaired with ultra-high performance fiber reinforced concrete (UHPFRC)", Compos. Struct., 157, 448-460. https://doi.org/10.1016/j.compstruct.2016.09.010.
- Shi, C.J., Wang, D.H., Wu, L.M. and Wu, Z.M. (2015), "The hydration and microstructure of ultra high-strength concrete with cement-silica fume-slag binder", Cement Concrete Compos., 61, 44-52. https://doi.org/10.1016/j.cemconcomp.2015.04.013.
- Skazlic, M. and Bjegovic, D. (2009), "Toughness testing of ultrahigh performance fiber reinforced concrete", Mater. Struct., 42(8), 1025-1038. https://doi.org/10.1617/s11527-008-9441-3.
- Tam, C.M., Tam, V.W.Y. and Ng, K.M. (2012), "Assessing drying shrinkage and water permeability of reactive powder concrete produced in Hong Kong", Constr. Build. Mater., 26(1), 79-89. https://doi.org/10.1016/j.conbuildmat.2011.05.006.
- Tanarslan, H.M. (2017), "Flexural strengthening of RC beams with prefabricated ultra high performance fiber reinforced concrete laminates", Eng. Struct., 151, 337-348. https://doi.org/10.1016/j.engstruct.2017.08.048.
- Tanarslan, H.M., Alver, N., Jahangiri, R., Yalcinkaya, C . and Yazici, H. (2017), "Flexural strengthening of RC beams using UHPFRC laminates: Bonding techniques and rebar addition", Constr. Build. Mater., 155, 45-55. https://doi.org/10.1016/j.conbuildmat.2017.08.056.
- Wang, C., Yang, C., Liu, F., Wan, C. and Pu, X. (2012), "Preparation of Ultra-High Performance Concrete with common technology and materials", Cement Concrete Compos., 34(4), 538-544. https://doi.org/10.1016/j.cemconcomp.2011.11.005.
- Wille, K., Kim, D. and Naaman, A.E. (2011a), "Strain-hardening UHP-FRC with low fiber contents", Mater. Struct., 44(3), 583-598. https://doi.org/10.1617/s11527-010-9650-4.
- Wille, K., Naaman, A.E. and Parra-Montesinos, G.J. (2011b), "Ultra-high performance concrete with compressive Strength exceeding 150 MPa (22 ksi): a simpler way", ACI Mater. J., 108(1), 46-54.
- Williams, E.M., Graham, S.S., Akers, S.A., Reed, P.A. and Rushing, T.S. (2010), "Constitutive property behavior of an ultra-high-performance concrete with and without steel fibers", Comput. Concrete, 7(2), 191-202. https://doi.org/10.12989/cac.2010.7.2.191.
- Yazici, H., Deniz, E. and Baradan, B. (2013), "The effect of autoclave pressure, temperature and duration time on mechanical properties of reactive powder concrete", Constr. Build. Mater., 42, 53-63. https://doi.org/10.1016/j.conbuildmat.2013.01.003.
- Yazici, H., Yardimci, M.Y., Yigiter, H., Aydin, S. and Turkel, S. (2010), "Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag", Cement Concrete Compos., 32(8), 639-648. https://doi.org/10.1016/j.cemconcomp.2010.07.005.
- Zheng, W., Luo, B. and Wang Y. (2013), "Compressive and tensile properties of reactive powder concrete with steel fibers at elevated temperatures", Constr. Build. Mater., 41, 844-851. https://doi.org/10.1016/j.conbuildmat.2012.12.066.
- Zong-Cai, D., Daud, J.R. and Chang-Xing, Y. (2014), "Bonding between high strength rebar and reactive powder concrete", Comput. Concrete, 13(3), 411-421. https://doi.org/10.12989/cac.2014.13.3.411.
Cited by
- Effect of medium coarse aggregate on fracture properties of ultra high strength concrete vol.77, pp.1, 2019, https://doi.org/10.12989/sem.2021.77.1.103
- Flexural strength of concrete-galvalume composite beam under elevated temperatures vol.27, pp.1, 2019, https://doi.org/10.12989/cac.2021.27.1.013
- Improving the seismic performance of reinforced concrete frames using an innovative metallic-shear damper vol.28, pp.3, 2021, https://doi.org/10.12989/cac.2021.28.3.275