• Title/Summary/Keyword: Bonding capacity

Search Result 186, Processing Time 0.023 seconds

Retrofitting of RC girders using pre-stressed CFRP sheets

  • Bansal, Prem Pal;Sharma, Raju;Mehta, Ankur
    • Steel and Composite Structures
    • /
    • v.20 no.4
    • /
    • pp.833-849
    • /
    • 2016
  • Pre-stressing of existing structures using steel cables, FRP cables or FRP laminates has been successfully tried in the past. Retrofitting of beams using pre-stressed laminates does not utilize the full strength of the FRP due to de-bonding of the laminates before the fibre fracture. In the present study attempt has been made to overcome this problem by replacing the FRP laminates by the FRP sheets. In the present paper the effect of initial damage level and pre-stress level on strength, stiffness, cracking behaviour and failure mode of girders retrofitted using pre-stressed CFRP sheets has been studied. The results indicate that rehabilitation of initially damaged girders by bonding pre-stressed CFRP sheets improves the flexural behaviour of beams appreciably. However, it has been observed that with increase in pre-stressing force the load carrying capacity of the girders increases up to a particular level up to which the mode of failure is fibre fracture. Thereafter, the mode of failure shifts from fibre fracture to de-bonding and there is no appreciable increase in load carrying capacity with further increase in pre-stressing force.

Tensile load bearing capacities of co-cured single and double lap joints (외면 및 양면겹치기 동시경화조인트의 인장하중 전달용량에 관한 연구)

  • 신금철;이정주
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.95-98
    • /
    • 2001
  • Co-cured joining method is an efficient joining technique because both curing and bonding processes for the composite structures can be achieved simultaneously. It requires neither an adhesive nor a surface treatment of the composite adherend because the excess resin, which is extracted from composite materials during consolidation, accomplishes the co-cured joining process. In this paper, we considered three bond parameters, affecting tensile load bearing capacity of the co-cured single and double lap joints. Filially, we nave presented optimal bonding conditions for co-cured single and double lap joints with steel and composite adherends under tensile loads.

  • PDF

Modelling seismically repaired and retrofitted reinforced concrete shear walls

  • Cortes-Puentes, W. Leonardo;Palermo, Dan
    • Computers and Concrete
    • /
    • v.8 no.5
    • /
    • pp.541-561
    • /
    • 2011
  • The Finite Element Method (FEM) was employed to demonstrate that accurate simulations of seismically repaired and retrofitted reinforced concrete shear walls can be achieved provided a good analysis program with comprehensive models for material and structural behaviour is used. Furthermore, the analysis tool should have the capability to retain residual damage experienced by the original structure and carry it forward in the repaired and retrofitted structure. The focus herein is to provide quick, simple, but reliable modelling procedures for repair and retrofitting strategies such as concrete replacement, addition of diagonal reinforcing bars, bolting of external steel plates, and bonding of external steel plates and fibre reinforced polymer sheets, thus illustrating versatility in the modelling. Slender, squat, and slender-squat shear walls were investigated. The modelling utilized simple rectangular membrane elements for the concrete, truss bar elements for the steel and FRP retrofitting materials, and bond-link elements for the bonding interface between steel or FRP to concrete. The analyses satisfactorily simulated seismic behaviour, including lateral load capacity, displacement capacity, energy dissipation, hysteretic response, and failure mode.

Enhancing Structural Integrity of Composite Sandwich Beams Using Viscoelastic Bonding with Tapered Epoxy Reinforcement

  • Rajesh Lalsing Shirale;Surekha Anil Bhalchandra
    • Korean Journal of Materials Research
    • /
    • v.34 no.3
    • /
    • pp.125-137
    • /
    • 2024
  • Composite laminates are used in a wide range of applications including defense, automotive, aviation and aerospace, marine, wind energy, and recreational sporting goods. These composite beams still exhibit problems such as buckling, local deformations, and interlaminar delamination. To overcome these drawbacks, a novel viscoelastic autoclave bonding with tapered epoxy reinforcement polyurethane films is proposed. In existing laminates, compression face wrinkling and interlaminar delamination is caused in the sandwich beam. The unique viscoelastic autoclave spunbond interlayer bonding is designed to prevent face wrinkling and absorb and distribute stresses induced by external loads, thereby eliminating interlaminar delamination in the sandwich beam. Also, the existing special reinforcement causes stress concentrations, and the core is not effectively connected, which directly affects the stiffness of the beam. To address this, a novel tapered epoxy polyurethane reinforcement adhesive film is proposed, whose reinforcement thickness gradually tapers as it enters the core material. This minimizes stress concentrations at the interface, preventing excessive adhesive squeeze-out during the bonding process, and improves the stiffness of the beam. Results indicate the proposed model avoids the formation of micro cracks, interlaminar delamination, buckling, and local deformations, and effectively improves the stiffness of the beam.

Analytical and numerical studies on hollow core slabs strengthened with hybrid FRP and overlay techniques

  • Kankeri, Pradeep;Prakash, S. Suriya;Pachalla, Sameer Kumar Sarma
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.535-546
    • /
    • 2018
  • The objective of this study is to understand the behaviour of hollow core slabs strengthened with FRP and hybrid techniques through numerical and analytical studies. Different strengthening techniques considered in this study are (i) External Bonding (EB) of Carbon Fiber Reinforced Polymer (CFRP) laminates, (ii) Near Surface Mounting (NSM) of CFRP laminates, (iii) Bonded Overlay (BO) using concrete layer, and (iv) hybrid strengthening which is a combination of bonded overlay and NSM or EB. In the numerical studies, three-dimensional Finite Element (FE) models of hollow core slabs were developed considering material and geometrical nonlinearities, and a phased nonlinear analysis was carried out. The analytical calculations were carried out using Response-2000 program which is based on Modified Compression Field Theory (MCFT). Both the numerical and analytical models predicted the behaviour in agreement with experimental results. Parametric studies indicated that increase in the bonded overlay thickness increases the peak load capacity without reducing the displacement ductility. The increase in FRP strengthening ratio increased the capacity but reduced the displacement ductility. The hybrid strengthening technique was found to increase the capacity of the hollow core slabs by more than 100% without compromise in ductility when compared to their individual strengthening schemes.

Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced concrete

  • Meraji, Leila;Afshin, Hasan;Abedi, Karim
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.159-172
    • /
    • 2019
  • This paper presents an investigation into the flexural behavior of reinforced concrete (RC) beams retrofitted by ultra-high performance fiber-reinforced concrete (UHPFRC) layers. The experimental study has been conducted in two parts. In the first part, four methods of retrofitting with UHPFRC layers in both the up and down sides of the beams have been proposed and their efficiency in the bonding of the normal concrete and ultra-high performance fiber-reinforced concrete has been discussed. The results showed that using the grooving method and the pre-casted UHPFRC layers in comparison with the sandblasting method and the cast-in-place UHPFRC layers leads to increase the load carrying capacity and the energy absorption capacity and causes high bond strength between two concretes. In the second part of the experimental study, the tests have been conducted on the beams with single UHPFRC layer in the down side and in the up side, using the effective retrofitting method chosen from the first part. The results are compared with those of non-retrofitted beam and the results of the first part of experimental study. The results showed that the retrofitted beam with two UHPFRC layers in the up and down sides has the highest energy absorption and load carrying capacity. A finite element analysis was applied to prediction the flexural behavior of the composite beams. A good agreement was achieved between the finite element and experimental results. Finally, a parametric study was carried out on full-scale retrofitted beams. The results indicated that in all retrofitted beams with UHPFRC in single and two sides, increasing of the UHPFRC layer thickness causes the load carrying capacity to be increased. Also, increases of the normal concrete compressive strength improved the cracking load of the beams.

Interfacial Fracture Toughness Measurement of Composite/metal Bonding (복합재료/금속 접착 계면의 파괴인성치 측정)

  • Kim, Won-Seock;Lee, Jung-Ju
    • Composites Research
    • /
    • v.21 no.4
    • /
    • pp.7-14
    • /
    • 2008
  • Prediction of the load-bearing capacity of an adhesive-bonded Joint is of practical importance for engineers. This paper introduces interface fracture mechanics approach to predict the load-bearing capacity of composite metal bonded joints. The adhesion strength of composite/steel bonding is evaluated in terms of the energy release rate of an interfacial crack and the fracture toughness of the interface. Virtual track closure technique (VCCT) is used to calculate energy release rates, and hi-material end-notched flexure (ENF) specimens are devised to measure the interfacial fracture toughness. Bi-material ENF specimens gave consistent mode II fracture toughness $(G_{IIc})$ values of the composite/steel interface regardless of the thickness of specimens. The critical energy release rates of double-lap joints showed a good agreement with the measured fracture toughness. Therefore. the energy-based interfacial fracture characterization can be a practical engineering tool for predicting the load-bearing capacity of bonded joints.

A Study for Numerical Procedure of Strengthening Capacity in Field (사용중 보강되는 부재의 보강설계법 연구)

  • 한만엽;이원창
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.861-866
    • /
    • 1998
  • This study is numerical procedure of strengthening capacity in a field structure and compare analysis data with test data. Recently, many strengthening methods are developed and used to rehabilitate existing structure. However, both theoretical background and applying techniques are not established yet. One of the most popular method is plate bonding method using either steel plate or carbon plate. This theoretical background and applying techniques are very important and those applications are differed when applied in field strengthening cases. Also depending on the analysis out come, displacement increased based n the condition of members while reaching ultimate load or failure load.

  • PDF

Finite element modeling of corroded RC beams using cohesive surface bonding approach

  • Al-Osta, Mohammed A.;Al-Sakkaf, Hamdi A.;Sharif, Alfarabi M.;Ahmad, Shamsad;Baluch, Mohammad H.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.167-182
    • /
    • 2018
  • The modeling of loss of bond between reinforcing bars (rebars) and concrete due to corrosion is useful in studying the behavior and prediction of residual load bearing capacity of corroded reinforced concrete (RC) members. In the present work, first the possibility of using different methods to simulate the rebars-concrete bonding, which is used in three-dimensional (3D) finite element (FE) modeling of corroded RC beams, was explored. The cohesive surface interaction method was found to be most suitable for simulating the bond between rebars and concrete. Secondly, using the cohesive surface interaction approach, the 3D FE modeling of the behavior of non-corroded and corroded RC beams was carried out in an ABAQUS environment. Experimental data, reported in literature, were used to validate the models. Then using the developed models, a parametric study was conducted to examine the effects of some parameters, such as degree and location of the corrosion, on the behavior and residual capacity of the corroded beams. The results obtained from the parametric analysis using the developed model showed that corrosion in top compression rebars has very small effect on the flexural behaviors of beams with small flexural reinforcement ratio that is less than the maximum ratio specified in ACI-318-14 (singly RC beam). In addition, the reduction of steel yield strength in tension reinforcement due to corrosion is the main source of reducing the load bearing capacity of corroded RC beams. The most critical corrosion-induced damage is the complete loss of bond between rebars and the concrete as it causes sudden failure and the beam acts as un-reinforced beam.

Flexural Capacity Evaluation of RC Member Retrofitted by CFS and with Various Damage Level (탄소섬유로 휨보강된 RC 부재의 손상정도에 따른 보유내력평가)

  • Seo, Soo-Yeon;Kim, Kyong-Tae;Yoon, Seung-Joe;Yun, Hyun-Do;Choi, Chang-Sik;Choi, Gi-Bong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.326-329
    • /
    • 2006
  • Strengthening method using CFS have been developed for the rehabilitation of structures. However, it is very difficult to estimate their resistance capacity after retrofit. Therefore, damage information for strengthened structure with CFS investigated and the estimation method structural capacity by using the damage information is developed. The final objective of this research work is to propose the guideline and method for resistance capacity estimate of structure. In this paper, experimental study result with test parameters of number of carbon fiber sheets and bonding ratio is introduced.

  • PDF