• 제목/요약/키워드: Bonding Process

검색결과 1,239건 처리시간 0.027초

열초음파 접합 공정과 접합부의 신뢰성 평가에 관한 연구 (A Study on Thermosonic Bonding Process and Its Reliability Evaluation of Joints)

  • 신영의;박진석;손선익
    • 한국전기전자재료학회논문지
    • /
    • 제22권8호
    • /
    • pp.625-631
    • /
    • 2009
  • In this thesis, lateral thermosonic bonding with ACFs was investigated as a process to make high reliability joints for FPD fabrication. Conditions for thermosonic and thermocompression bonding with ACFs were determined and used to make specimens in a driving test jig for testing of bond reliability by thermal shock. The results showed that thermosonic bonding temperature of $199\;^{\circ}C$ and bonding time of 1s produced bonds with good reliability. Additionally, thermosonic bonding temperature and time were reduced and thermal shock test results compared to this proposed curing condition. It is concluded that theromosonic bonding with ACFs can be effectively applied to reduce bonding temperature and time compared with that of thermocompression bonding.

열처리 방법에 따른 실리콘 기판쌍의 접합 특성 (Bonding Property of Silicon Wafer Pairs with Annealing Method)

  • 민홍석;이상현;송오성;주영창
    • 한국전기전자재료학회논문지
    • /
    • 제16권5호
    • /
    • pp.365-371
    • /
    • 2003
  • We prepared silicon on insulator(SOI) wafer pairs of Si/1800${\AA}$ -SiO$_2$ ∥ 1800${\AA}$ -SiO$_2$/Si using water direct bonding method. Wafer pairs bonded at room-temperature were annealed by a normal furnace system or a fast linear annealing(FLA) equipment, and the micro-structure of bonding interfaces for each annealing method was investigated. Upper wafer of bonded pairs was polished to be 50 $\mu\textrm{m}$ by chemical mechanical polishing(CMP) process to confirm the real application. Defects and bonding area of bonded water pairs were observed by optical images. Electrical and mechanical properties were characterized by measuring leakage current for sweeping to 120 V, and by observing the change of wafer curvature with annealing process, respectively. FLA process was superior to normal furnace process in aspects of bonding area, I-V property, and stress generation.

Spin-on Glass를 이용한 실리콘과 유리의 저온 접합 공정 (Low Temperature Bonding Process of Silicon and Glass using Spin-on Glass)

  • 이재학;유중돈
    • Journal of Welding and Joining
    • /
    • 제23권6호
    • /
    • pp.77-86
    • /
    • 2005
  • Low temperature bonding of the silicon and glass using the Spin-on Glass (SOG) has been conducted experimentally to figure out the effects of the SOG solution composition and process variables on bond strength using the Design of Experiment method. In order to achieve the high quality bond interface without rack, sufficient reaction time of the optimal SOG solution composition is needed along with proper pressure and annealing temperature. The shear strength under the optimal SOG solution composition and process condition was higher than that of conventional anodic bonding and similar to that of wafer direct bonding.

Investigation of bonding properties of Al/Cu bimetallic laminates fabricated by the asymmetric roll bonding techniques

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in Computational Design
    • /
    • 제4권1호
    • /
    • pp.33-41
    • /
    • 2019
  • In this study, 2-mm Al/Cu bimetallic laminates were produced using asymmetric roll bonding (RB) process. The asymmetric RB process was carried out with thickness reduction ratios of 10%, 20% and 30% and mismatch rolling speeds 1:1, 1:1.1 and 1:1.2, separately. For various experimental conditions, finite element simulation was used to model the deformation of bimetallic Al/Cu laminates. Specific attention was focused on the bonding strength and bonding quality of the interface between Al and Cu layers in the simulation and experiment. The optimization of mismatch rolling speed ratios was obtained for the improvement of the bond strength of bimetallic laminates during the asymmetric RB process. During the finite element simulation, the plastic strain of samples was found to reach the maximum value with a high quality bond for the samples produced with mismatch rolling speed 1:1.2. Moreover, the peeling surfaces of samples around the interface of laminates after the peeling test were studied to investigate the bonding quality by scanning electron microscopy.

실험계획법을 이용한 LCD 압착장비의 설계최적화 (The Design Optimization of LCD Panel Bonding Equipment by Design of Experiment)

  • 황일권;김동민;채수원
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.92-98
    • /
    • 2010
  • The design of press bonding tool in LCD module equipment is a very complex and difficult task because many design able variables are involved while their effects are not known. It takes longtime experiments and much expenses to verify the effects of these design variables. However the optimization of bonding tool using OLB(outer lead bonding) and PCB Bonding is a very important problem in LCD manufacturing process, so much design efforts have been made for improving the bonding tool performance. In this paper, a reasonable and fast process which gives optimized solution under the design requirements has been presented. Both analytical and statistical methods are employed in this process. A reliable analytic model using experiment-oriented FE analysis can be obtained, in which the regression equations that predict the tool efficiency from various DOE method are found. Improvement of tool efficiency could be estimated by the regression equations using meaningful factors converged by RSM(Response Surface Method). With this process a reasonable optimized solution that meets a variety of design requirements can be easily obtained.

Ti-3Al-2.5V 튜브의 초소성 하이드로포밍과 확산접합으로 제조된 T형 구조물의 접합 특성 분석 (Analysis of Bonding Characteristics of a T-shape Structure Fabricated by Superplastic Hydroforming and Diffusion Bonding using two Ti-3Al-2.5V tubes)

  • 유영훈;이상용
    • 열처리공학회지
    • /
    • 제31권2호
    • /
    • pp.49-55
    • /
    • 2018
  • A T-shape structure was manufactured by the superplastic forming and diffusion bonding process using two Ti-3Al-2.5V alloy tubes. A Ti-3Al-2.5V tube was prepared for the hydroforming in the superplastic condition until it reaches a surface area such as a roof welded in the hole of another Ti-3Al-2.5V tube. Afterward, the superplastic forming process and the diffusion bonding process were carried out simultaneously until the appropriate bonding along the interface area of two Ti-3Al-2.5V tubes was obtained. The bonding qualities were different at each location of the entire interface according to the applied process conditions such as strain, pressure, temperature, holding time, geometries, etc. The microstructures of bonding interface have been observed to understand the characteristics of the applied processes in this study.

광PCB를 위한 폴리머 저온 접합기술 연구 (Study on Low Temperature Bonding Technology for Optical PCB with Polymer Intermediate Layers)

  • 차두열;이재혁;장성필
    • 한국전기전자재료학회논문지
    • /
    • 제23권1호
    • /
    • pp.29-33
    • /
    • 2010
  • As the demands for the higher data transmission speed and capacity as well as integration density grow throughout the network, much works have being done in order to integrate the Electrical PCB with Optical PCB. However, one of the most troublesome problems in the commercial bonding process is to need the high temperature for the bonding. Due to the high temperature bonding process, lots of side problems are followed such as warpage and crack, etc. In this paper, we tried to develop the new bonding technology with low temperature around $100^{\circ}C$. As a result of this study, the PCB bonding technology with high bonding strength is demonstrated with the value of bonding strength from 7 to 8 MPa at the temperature of $100^{\circ}C$.

초음파 플립칩 접합 모듈의 위상최적화 설계 및 성능 실험 (Design by Topology Optimization and Performance Test of Ultrasonic Bonding Module for Flip-Chip Packaging)

  • 김지수;김종민;이수일
    • Journal of Welding and Joining
    • /
    • 제30권6호
    • /
    • pp.113-119
    • /
    • 2012
  • Ultrasonic bonding is the novel packaging method for flip-chip with high yield and low-temperature bonding. The bonding module is a core part of the bonding machine, which can transfer the ultrasonic energy into the bonding spot. In this paper, we propose topology optimization technique which can make new design of boding modules due to the constraints on resonance frequency and mode shapes. The designed bonding module using topology optimization was fabricated in order to evaluate the bonding performance and reliable operation during the continuous bonding process. The actual production models based on the proposed design satisfied the target frequency range and ultrasonic power. The bonding test was performed using flip-chip with lead-free Sn-based bumps, the results confirmed that the bonding strength was sufficient with the designed bonding modules. Also the performance degradation of the bonding module was not observed after the 300-hour continuous process with bonding conditions.

3중 접합 공정에 의한 MEMS 공진기의 웨이퍼레벨 진공 패키징 (Wafer-level Vacuum Packaging of a MEMS Resonator using the Three-layer Bonding Technique)

  • 양충모;김희연;박종철;나예은;김태현;노길선;심갑섭;김기훈
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.354-359
    • /
    • 2020
  • The high vacuum hermetic sealing technique ensures excellent performance of MEMS resonators. For the high vacuum hermetic sealing, the customization of anodic bonding equipment was conducted for the glass/Si/glass triple-stack anodic bonding process. Figure 1 presents the schematic of the MEMS resonator with triple-stack high-vacuum anodic bonding. The anodic bonding process for vacuum sealing was performed with the chamber pressure lower than 5 × 10-6 mbar, the piston pressure of 5 kN, and the applied voltage was 1 kV. The process temperature during anodic bonding was 400 ℃. To maintain the vacuum condition of the glass cavity, a getter material, such as a titanium thin film, was deposited. The getter materials was active at the 400 ℃ during the anodic bonding process. To read out the electrical signals from the Si resonator, a vertical feed-through was applied by using through glass via (TGV) which is formed by sandblasting technique of cap glass wafer. The aluminum electrodes was conformally deposited on the via-hole structure of cap glass. The TGV process provides reliable electrical interconnection between Si resonator and aluminum electrodes on the cap glass without leakage or electrical disconnection through the TGV. The fabricated MEMS resonator with proposed vacuum packaging using three-layer anodic bonding process has resonance frequency and quality factor of about 16 kHz and more than 40,000, respectively.

접합 공정 조건이 Al-Al 접합의 계면접착에너지에 미치는 영향 (Effect of Bonding Process Conditions on the Interfacial Adhesion Energy of Al-Al Direct Bonds)

  • 김재원;정명혁;장은정;박성철;;;;김성동;박영배
    • 한국재료학회지
    • /
    • 제20권6호
    • /
    • pp.319-325
    • /
    • 2010
  • 3-D IC integration enables the smallest form factor and highest performance due to the shortest and most plentiful interconnects between chips. Direct metal bonding has several advantages over the solder-based bonding, including lower electrical resistivity, better electromigration resistance and more reduced interconnect RC delay, while high process temperature is one of the major bottlenecks of metal direct bonding because it can negatively influence device reliability and manufacturing yield. We performed quantitative analyses of the interfacial properties of Al-Al bonds with varying process parameters, bonding temperature, bonding time, and bonding environment. A 4-point bending method was used to measure the interfacial adhesion energy. The quantitative interfacial adhesion energy measured by a 4-point bending test shows 1.33, 2.25, and $6.44\;J/m^2$ for 400, 450, and $500^{\circ}C$, respectively, in a $N_2$ atmosphere. Increasing the bonding time from 1 to 4 hrs enhanced the interfacial fracture toughness while the effects of forming gas were negligible, which were correlated to the bonding interface analysis results. XPS depth analysis results on the delaminated interfaces showed that the relative area fraction of aluminum oxide to the pure aluminum phase near the bonding surfaces match well the variations of interfacial adhesion energies with bonding process conditions.