Browse > Article
http://dx.doi.org/10.4313/JKEM.2010.23.1.029

Study on Low Temperature Bonding Technology for Optical PCB with Polymer Intermediate Layers  

Cha, Doo-Yeol (인하대학교 전자공학과)
Lee, Jai-Hyuk (인하대학교 전자공학과)
Chang, Sung-Pil (인하대학교 전자공학과)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.23, no.1, 2010 , pp. 29-33 More about this Journal
Abstract
As the demands for the higher data transmission speed and capacity as well as integration density grow throughout the network, much works have being done in order to integrate the Electrical PCB with Optical PCB. However, one of the most troublesome problems in the commercial bonding process is to need the high temperature for the bonding. Due to the high temperature bonding process, lots of side problems are followed such as warpage and crack, etc. In this paper, we tried to develop the new bonding technology with low temperature around $100^{\circ}C$. As a result of this study, the PCB bonding technology with high bonding strength is demonstrated with the value of bonding strength from 7 to 8 MPa at the temperature of $100^{\circ}C$.
Keywords
Low temperature bonding; Electrical PCB; Optical PCB; Bonding strength;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Han A., Oh K. W., Bhansali S., Henderson H. T., and Ahn C. H., "A low temperature biochemically compatible bonding technique using fluoropolymers for biochemical microfluidic systems", Proc. MEMS 2000, p. 414, 2000.
2 Frazier A. B., "Low temperature IC-compatible wafer-to-wafer bonding with embedded micro channels for integrated sensing systems", Proc. Midwest Symp. on Circuits and Systems 1996, p. 505, 1996.
3 민홍석, 주영창, 송오성, “유리/실리콘 기판 직접 접합에서의 세정과 열처리 효과”, 전기전자재료학회논문지, 15권, 6호, p. 479, 2002.   과학기술학회마을   DOI
4 Kang I. B., Manda M., Hariz A., Samaan N. D., and Haskard M. R., "Polymer bonding technique for silicon micromoulds", Proc. MICRO 1997, p. 129, 1997.
5 Klink G. and Hillerich B., "Wafer bonding with an adhesive coating", Proc. SPIE, Vol. 3514, p. 50, 1998.   DOI
6 Den Besten C., Van Hal R. E. G., Munoz J., and Bergveld P., "Polymer bonding of micro-machined silicon structures", Proc. MEMS, p. 104, 1992.
7 Van der Groen S., Rosmeulen M., Jansen P., Baert K., and Deferm L., "CMOS compatible wafer scale adhesive bonding for circuit transfer", Proc. Transducers, p. 629, 1997.
8 Booth E. and Hunt C. E., "Low temperature adhesion bonding methods Proc. semiconductor wafer bonding: Science, technology and applications", Electrochem. Soc., Vol. 95-7, p. 201, 1995.
9 Weckwerth M. V., Simmons J. A., Harff N. E., Sherwin M. E., Blount M. A., Baca W. E., and Chui H. C., "Epoxy bond and stop-etch (EBASE) technique enabling backside processing of (Al)GaAs heterostructures Superlatt", Microstruct., Vol. 20, p. 561, 1996.   DOI   ScienceOn
10 Ilic B., Neuzil P., Stanczyk T., Czaplewski D., and Maclay G. J., "Low temperature Nafion bonding of silicon wafers", Electrochem. Solid-State Lett., Vol. 2, p. 86, 1999.   DOI
11 이영민 “광소자 패키징 기술”, 전기전자재료, 16권, 8호, p. 10, 2003.   과학기술학회마을
12 Alvino W. M., "Plastics For Electronics : Materials, Properties, and Design", New York: McGraw-Hill, 1995.
13 Shores A. A., "Thermoplastic films for adhesive bonding:hybrid microcircuit substrates", Proc. Electronic Components Conf., p. 891, 1989.