• Title/Summary/Keyword: Bonded interface

Search Result 418, Processing Time 0.026 seconds

Microtensile bond strength of resin cement primer containing nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) to human dentin

  • Arjmand, Nushin;Boruziniat, Alireza;Zakeri, Majid;Mohammadipour, Hamideh Sadat
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.177-183
    • /
    • 2018
  • PURPOSE. The purpose of the current study was to evaluate the effect of incorporating nanoparticles of silver (NAg) and amorphous calcium phosphate (NACP) into a self-etching primer of a resin cement on the microtensile bond strength of dentin, regarding the proven antibacterial feature of NAg and remineralizing effect of NACP. MATERIALS AND METHODS. Flat, mid-coronal dentin from 20 intact extracted human third molars were prepared for cementation using Panavia F2.0 cement. The teeth were randomly divided into the four test groups (n=5) according to the experimental cement primer composition: cement primer without change (control group), primer with 1% (wt) of NACP, primer with 1% (wt) of physical mixture of NACP+Nag, and primer with 1% (wt) of chemical mixture of NACP+Nag. The resin cement was used according to the manufacturer's instructions. After storage in distilled water at $37^{\circ}C$ for 24 h, the bonded samples were sectioned longitudinally to produce $1.0{\times}1.0mm$ beams for micro-tensile bond strength testing in a universal testing machine. Failure modes at the dentin-resin interface were observed using a stereomicroscope. The data were analyzed by one-way ANOVA and Tukey's post-hoc tests and the level of significance was set at 0.05. RESULTS. The lowest mean microtensile bond strength was obtained for the NACP group. Tukey's test showed that the bond strength of the control group was significantly higher than those of the other experimental groups, except for group 4 (chemical mixture of NACP and NAg; P=.67). CONCLUSION. Novel chemical incorporation of NAg-NACP into the self-etching primer of resin cement does not compromise the dentin bond strength.

Simulation of Ultrasonic Stress During Impact Phase in Wire Bonding

  • Mayer, Michael
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.20 no.4
    • /
    • pp.7-11
    • /
    • 2013
  • As thermosonic ball bonding is developed for more and more advanced applications in the electronic packaging industry, the control of process stresses induced on the integrated circuits becomes more important. If Cu bonding wire is used instead of Au wire, larger ultrasonic levels are common during bonding. For advanced microchips the use of Cu based wire is risky because the ultrasonic stresses can cause chip damage. This risk needs to be managed by e.g. the use of ultrasound during the impact stage of the ball on the pad ("pre-bleed") as it can reduce the strain hardening effect, which leads to a softer deformed ball that can be bonded with less ultrasound. To find the best profiles of ultrasound during impact, a numerical model is reported for ultrasonic bonding with capillary dynamics combined with a geometrical model describing ball deformation based on volume conservation and stress balance. This leads to an efficient procedure of ball bond modelling bypassing plasticity and contact pairs. The ultrasonic force and average stress at the bond zone are extracted from the numerical experiments for a $50{\mu}m$ diameter free air ball deformed by a capillary with a hole diameter of $35{\mu}m$ at the tip, a chamfer diameter of $51{\mu}m$, a chamfer angle of $90^{\circ}$, and a face angle of $1^{\circ}$. An upper limit of the ultrasonic amplitude during impact is derived below which the ultrasonic shear stress at the interface is not higher than 120 MPa, which can be recommended for low stress bonding.

A Study on the Toothbrush-Dentifrice Abrasion of Class V Restroations (치경부 5급 와동 수복의 잇솔질 마모에 관한 연구)

  • Hwang, Su-Jin;Yu, Mi-Kyung;Lee, Kwang-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.69-81
    • /
    • 2005
  • The objective of this study was to evaluate the toothbrush abrasion characteristics of class V restorations. Thirty extracted human premolars, which were collected from oral surgery clinics were used. We mounted five teeth in a metal ring mold of 50 mm in diameter and 15 mm in height using chemically cured acrylic resin. Class V cavities were prepared in lingual cervical root surfaces and restored using one of following restorative materials : Dentin Conditioner/Fuji II LC (Group FL), All Bond II/Z-250 (Group ZT), One-up Bond F/Palfigue Estelite (Group PE), F2000 Primer/Adhesive (Group FT), and Prime & Bond 2.1/Dyract AP (Group DR). They were stored under distilled water at $37^{\circ}C$ for seven days. The toothbrush abrasion test was conducted using a wear testing machine of pin-on disk type under a load of 1.5 N for 100,000 cycles. We have examined the bonded interfaces, the changes of surface roughness and color of abraded surfaces. From this experiment, the following results were obtained. 1. The change of surface roughness showed high degree: RMGIC>compomer>composite resin (p<0.05). 2. Because of the protrusion and missing of filler particles, SEM observation of abraded surfaces of RMGIC and compomers revealed the increase of surface roughness due to the selective removal of matrix resin. 3. The color change by toothbrush abrasion was affected in large part by the change of $L^*$ and $b^*$ of resin composites (p<0.05). 4. The color change by toothbrush abrasion was so small to detect by human eyes. 5. SEM observation of abraded surfaces revealed the interface bonding was the best in the FT group.

Study of Failure Mechanisms of Wafer Level Vacuum Packaging for MEMG Gyroscope Sensor (웨이퍼 레벨 진공 패키징된 MEMS 자이로스코프 센서의 파괴 인자에 관한 연구)

  • 좌성훈;김운배;최민석;김종석;송기무
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.3
    • /
    • pp.57-65
    • /
    • 2003
  • In this study, we carry out reliability tests and investigate the failure mechanisms of the anodically bonded wafer level vacuum packaging (WLVP) MEMS gyroscope sensor. There are three failure mechanisms of WLVP: leakage, permeation and out-gassing. The leakage is caused by small dimension of the leak channel through the bonding interface and internal defects. The larger bonding width and the use of single crystalline silicon can reduce the leak rate. Silicon and glass wafer itself generates a large amount of outgassing including $H_2O$, $C_3H_5$, $CO_2$, and organic gases. Epi-poly wafer generates 10 times larger amount of outgassing than SOI wafer. The sandblasting process in the glass increases outgassing substantially. Outgassing can be minimized by pre-baking of the wafer in the vacuum oven before bonding process. An optimum pre-baking temperature of the wafers would be between $400^{\circ}C$ and $500^{\circ}C$.

  • PDF

Lower Temperature Soldering of Capacitor Using Sn-Bi Coated $Sn-3.5\%Ag$ Solder (Sn-Bi도금 $Sn-3.5\%Ag$ 솔더를 이용한 Capacitor의 저온 솔더링)

  • Kim Mi-Jin;Cho Sun-Yun;Kim Sook-Hwan;Jung Jae-Pil
    • Journal of Welding and Joining
    • /
    • v.23 no.3
    • /
    • pp.61-67
    • /
    • 2005
  • Since lead (Pb)-free solders for electronics have higher melting points than that of eutectic Sn-Pb solder, they need higher soldering temperatures. In order to decrease the soldering temperature we tried to coat Sn-Bi layer on $Sn-3.5\%Ag$ solder by electroplating, which applies the mechanism of transient liquid phase bonding to soldering. During heating Bi will diffuse into the $Sn-3.5\%Ag$ solder and this results in decreasing soldering temperature. As bonding samples, the 1608 capacitor electroplated with Sn, and PCB, its surface was finished with electroless-plated Ni/Au, were selected. The $Sn-95.7\%Bi$ coated Sn-3.5Ag was supplied as a solder between the capacitor and PCB land. The samples were reflowed at $220^{\circ}C$, which was lower than that of normal reflow temperature, $240\~250^{\circ}C$, for the Pb-free. As experimental result, the joint of $Sn-95.7\%Bi$ coated Sn-3.5Ag showed high shear strength. In the as-reflowed state, the shear strength of the coated solder showed 58.8N, whereas those of commercial ones were 37.2N (Sn-37Pb), 31.4N (Sn-3Ag-0.5Cu), and 40.2N (Sn-8Zn-3Bi). After thermal shock of 1000 cycles between $-40^{\circ}C$ and $+125^{\circ}C$, shear strength of the coated solder showed 56.8N, whereas the previous commercial solders were in the range of 32.3N and 45.1N. As the microstructures, in the solder $Ag_3Sn$ intermetallic compound (IMC), and along the bonded interface $Ni_3Sn_4$ IMC were observed.

Influence of cement thickness on resin-zirconia microtensile bond strength

  • Lee, Tae-Hoon;Ahn, Jin-Soo;Shim, June-Sung;Han, Chong-Hyun;Kim, Sun-Jai
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.119-125
    • /
    • 2011
  • PURPOSE. The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS. Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 ${\mu}m$, storage: thermocycled or not). They were cut into microbeams and stored in $37^{\circ}C$ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (${\alpha}$=95%). RESULTS. All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION. When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength.

Stress Analysis of Total Knee System Depending on Implant Materials and Fixation Methods (인공무릎관절에 있어서 임플란트의 재료 및 고정방법에 따른 응력분석)

  • Cho, C.H.;Cho, Y.K.;Choi, J.B.;Choi, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.484-488
    • /
    • 1997
  • Three-dimensional finite element analyses were used to compare the stress distribution and the stability of the fixation among seven different tibial components and to investigate the effect due to implant materials in total knee arthroplasty. The components included an intact tibia(Type I), Cemented Cobalt-Chromium tibial tray implanted with a PMMA cemented Co-Cr stem(Type II), Cemented Co-Cr tibial tray with a uncemented Co-Cr stem(Type III), Cemented Ultra High Molecular Weight Polyethylene (UHMWPE) tibial tray with a cemented UHMWPE stem (Type IV), Cemented UHMWPE tray with a uncemented UHMWPE stem(Type V), Cemented Co-Cr tray without a stem(Type VI), and Cemented UHMWPE tray without a stem(Type VII). Uncemented components were assumed to have complete bony in growth and a rigid state of fixation between component and bone. The interface between bone/cement/component of cemented components was also assumed to be fully bonded. Bi-condylar forces were applied. The results indicated that Uncemented stem components provided lower bone stress shielding and stress concentration. The UHMWPE tray and stem component showed better agreement with the intact tibia than the Co-Cr Alloy tray and stem components. If the implant tray can be fixed firmed without a stem, Cemented PE tray without a stem(Type VII) may be recommended to give the best characteristics in the sense of stress distribution and stability.

  • PDF

SHEAR BOND STRENGTH OF SELF-ETCHING ADHESIVES TO DENTIN AND SEM ANALYSIS (상아질에 대한 자가 산부식 접착제의 전단결합강도와 SEM 분석 비교)

  • Cho, Young-Gon;Roh, Kee-Sun;Kim, Soo-Mee;Lee, Young-Gon;Jeong, Jin-Ho;Ki, Young-Jae
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.3
    • /
    • pp.222-231
    • /
    • 2003
  • The purpose of this study was to compare shear bond strength and interfacial pattern of composite bond-ed to dentin using self-etching adhesive systems. Sixty extracted human molars with exposed occlusal dentin were divided into four groups and bonded with four adhesives and composites. Single Bond/Filtek Z 350(SB), Tyrian SPE-One-Step Plus/Aelitefil(TY), Prompt L-Pop/Filtek Z 250(LP), and One-Up Bond F/palfique Toughwell(OU). The results of this study were as follows; 1 Shear bond strength for OU was significantly lower than that of other groups(p<0.05). No significant difference was founded among SB, TY, and LP. 2. Failure modes to dentin showed adhesive and mixed for SB TY and LP, but them for OU showed adhesive in all spceimens. 3. Dentin-resin interface showed close adaptation for SB, TY, and LP, but it showed gap for OU. 4. The hybrid layers for TY, LP OU were thinner than that of SB. Adhesive layers were observed between composite and hybrid layer, which were 5 $\mu\textrm{m}$ thick for TY and 10 $\mu\textrm{m}$ thick for OU.

Tensile strength of bilayered ceramics and corresponding glass veneers

  • Anunmana, Chuchai;Champirat, Tharee;Jirajariyavej, Bundhit
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • PURPOSE. To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS. Blocks of core ceramics (IPS e.max$^{(R)}$ Press and Lava$^{TM}$ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and $1mm^2$ in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max$^{(R)}$ Ceram and LavaTM Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS. The mean microtensile bond strength of IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram ($43.40{\pm}5.51$ MPa) was significantly greater than that of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram ($31.71{\pm}7.03$ MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava$^{TM}$ Ceram, while the bond strength of bilayered IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram was significantly greater than tensile strength of monolithic IPS e.max$^{(R)}$ Ceram. CONCLUSION. Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials.

Resin bonding of metal brackets to glazed zirconia with a porcelain primer

  • Lee, Jung-Hwan;Lee, Milim;Kim, Kyoung-Nam;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.45 no.6
    • /
    • pp.299-307
    • /
    • 2015
  • Objective: The aims of this study were to compare the shear bond strength between orthodontic metal brackets and glazed zirconia using different types of primer before applying resin cement and to determine which primer was more effective. Methods: Zirconia blocks were milled and embedded in acrylic resin and randomly assigned to one of four groups: nonglazed zirconia with sandblasting and zirconia primer (NZ); glazed zirconia with sandblasting, etching, and zirconia primer (GZ); glazed zirconia with sandblasting, etching, and porcelain primer (GP); and glazed zirconia with sandblasting, etching, zirconia primer, and porcelain primer (GZP). A stainless steel metal bracket was bonded to each target surface with resin cement, and all specimens underwent thermal cycling. The shear bond strength of the specimens was measured by a universal testing machine. A scanning electron microscope, three-dimensional optical surface-profiler, and stereoscopic microscope were used to image the zirconia surfaces. The data were analyzed with one-way analyses of variance and the Fisher exact test. Results: Group GZ showed significantly lower shear bond strength than did the other groups. No statistically significant differences were found among groups NZ, GP, and GZP. All specimens in group GZ showed adhesive failure between the zirconia and resin cement. In groups NZ and GP, bonding failed at the interface between the resin cement and bracket base or showed complex adhesive and cohesive failure. Conclusions: Porcelain primer is the more appropriate choice for bonding a metal bracket to the surface of a full-contour glazed zirconia crown with resin cement.