• Title/Summary/Keyword: Bonded interface

Search Result 420, Processing Time 0.03 seconds

The Effect of Processing Variables on Self-Bonding Strength in Amorphous PEEK Films (비정질 PEEK 필름의 Self-Bonding강도에 미치는 제조공정변수의 영향)

  • Jo, Beom-Rae;Kardos, J.L.
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.191-196
    • /
    • 1995
  • Self-bonding strength developed at the interface of amorphous PEEK films is highly sensitive to the processing variables(time, temperature, and pressure) during the bonding process. In order to examine the effects of these processing variables, amorphous PEEK films were bonded at various bonding conditions and the resultant interfacial bond strengths were measured using a modified single lap-shear test. Experimental results showed that the developed self-bonding strength increases with increase in bonding temperature and is directly proportional to the bonding time raised to the 1/4 power. The applied pressure seems only to produce better wetting at the beginning stage of the bonding process. Conclusively, the self-bonding of amorphous PEEK films provides a great potential for developing excellent bond strength approaching the strength of the parent material without any adhesives in structural applications.

  • PDF

Characterization of Subsurface Damage in Si3N4 Ceramics with Static and Dynamic Indentation

  • Kim, Jong-Ho;Kim, Young-Gu;Kim, Do-Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.537-541
    • /
    • 2005
  • Silicon nitride is one of the most successful engineering ceramics, owing to a favorable combination of properties, including high strength, high hardness, low thermal expansion coefficient, and high fracture toughness. However, the impact damage behavior of $Si_3N_4$ ceramics has not been widely characterized. In this study, sphere and explosive indentations were used to characterize the static and dynamic damage behavior of $Si_3N_4$ ceramics with different microstructures. Three grades of $Si_3N_4$ with different grain size and shape, fine-equiaxed, medium, and coarse-elongated, were prepared. In order to observe the subsurface damaged zone, a bonded-interface technique was adopted. Subsurface damage evolution of the specimens was then characterized extensively using optical and electron microscopy. It was found that the damage response depends strongly on the microstructure of the ceramics, particularly on the glassy grain boundary phase. In the case of static indentation, examination of subsurface damage revealed competition between brittle and ductile damage modes. In contrast to static indentation results, dynamic indentation induces a massive subsurface yield zone that contains severe micro-failures. In this study, it is suggested that the weak glassy grain boundary phase plays an important role in the resistance to dynamic fracture.

The Performance Improvement of Strengthened RC Beams Using an Inserted Plate (FRP-콘크리트 경계면 삽입플레이트 활용을 통한 휨 보강 철근콘크리트 보의 성능개선)

  • Ahn, Mi-Kyoung;Lee, Sang-Moon;Jung, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.73-74
    • /
    • 2010
  • The objective of this research is to improve the flexural capacity of RC Beams. To delay prematured tension failure of concrete specimen and to improve flexural capacity of RC beam by increasing the contribution of FRP strengthening plates, a method for inserting a laminate to the interface between concrete and FRP materials. This method makes it possible to increase overall flexural performance of RC beam by FRP plate compared to normal RC beams and RC beam strengthened by bonded FRP plates. The new bonding technique is applicable to all types of reinforcement available FRP laminate, and in principle is also applicable to materials other than FRP.

  • PDF

Effects of Hybrid Coat on shear bond strength of five cements: an in-vitro study

  • Guo, Yue;Zhou, Hou-De;Feng, Yun-Zhi
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.6
    • /
    • pp.447-452
    • /
    • 2017
  • PURPOSE. To evaluate the sealing performance of Hybrid Coat and its influence on the shear bond strength of five dentin surface cements. MATERIALS AND METHODS. Six premolars were pretreated to expose the dentin surface prior to the application of Hybrid Coat. The microscopic characteristics of the dentinal surfaces were examined with scanning electron microscopy (SEM). Then, 40 premolars were sectioned longitudinally, and 80 semi-sections were divided into a control group (untreated) and a study group (treated by Hybrid Coat). Alloy restoration was bonded to the teeth specimen using five different cements. Shear bond strength was measured by the universal testing machine. The fracture patterns and the adhesive interface were observed using a stereomicroscope. RESULTS. SEM revealed that the lumens of dentinal tubules were completely occluded by Hybrid Coat. The Hybrid Coat significantly improved the shear bond strength of resin-modified glass ionomer cement (RMGIC) and resin cement (RC) but weakened the performance of zinc phosphate cement (ZPC), zinc polycarboxylate cement (ZPCC) and glass ionomer cement (GIC). CONCLUSION. Hybrid Coat is an effective dentinal tubule sealant, and therefore its combined use with resin or resin-modified glass ionomer cements can be applied for the prostheses attachment purpose.

The Evaluation Technique of Surface Region using Backward-Radiated Ultrasound (후방 복사된 초음파를 이용한 표면 지역의 평가 기술)

  • Kwon, S.D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.4
    • /
    • pp.241-250
    • /
    • 1997
  • The velocity dispersion of surface acoustical wave(SAW) of Si layer/mesh Au/Si substrate was measured by the frequency analysis technique of backward radiation at liquid/solid interface. The difference of backward radiation patterns depending on used transducers (2, 5, 10MHz) confirmed that the backward radiation phenomenon was caused by the energy radiation from SAW generated in surface region. An ultrasonic goniometer was constructed to measure continuously the angular dependence of backscattered intensity. The angular dependences of backward radiation(5MHz) were measured for Ni layer/Al substrate specimens that were bonded by epoxy involving different content of Cu powder. It was known that the width and pattern of backward radiation had informations such as the velocity dispersion, bonding quality and structure of surface region.

  • PDF

Fracture Mechanics Analysis of Cracked Plate Repaired by Patch(II) - The Analysis of Debonding Effect - (보강재로 보수된 균열평판의 파괴역학적 해석(II)-분리 영향에 대한 연구-)

  • Jeong, Gi-Hyeon;Yang, Won-Ho;Jo, Myeong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2246-2251
    • /
    • 2000
  • Adhesive bonding repair methods has been used for a number of decades for construction of damaged structures. In order to evaluate the life of cracked aging aircraft structures, the repair technique which uses adhesively bonded boron/epoxy composite patches is being widely considered as a cost-effective and reliable method. But, this repair method contains many shortcomings. One of these shortcomings, debonding is major issue. When the adhesive shear stress increases, debonding is caused at the end of patch and plate interface. And this debonding is another defect except cracks propagation. In this paper, we assess safety at the cracked AI-plate repaired by Br/Epoxy composite patch. Firstly, from the view of fracture mechanics, reduction of stress intensity factors is determined by the variety of patch feature. Secondly, using the elastic analysis and finite element analysis, the distribution of adhesive shear stresses is acquired. Finally, The problem of how to optimize the geometric configurations of the patch has been discussed.

Characterization of Morphology Controlled Fluorine-doped SnO2 Thin Films

  • An, Ha-Rim;An, Hye-Lan;Ahn, Hyo-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.453.1-453.1
    • /
    • 2014
  • Fluorine-doped tin oxide (FTO), which is commonly used in dye-sensitized solar cells (DSSCs), is a promising material of transparent conducting oxides (TCOs) because of advantages such as high chemical stability, high resistance, high optical transparency (>80% at 550nm), and low electrical resistivity (${\sim}10-4{\Omega}{\cdot}cm$). Especially, dye-sensitized solar cells (DSSCs) have been actively studied since Gratzel's research group required FTO substrate as a charge collector. When FTO substrates are used in DSSCs, photo-injected electrons may experience recombination at interface between dye-bonded semiconductor oxides ($TiO_2$) on FTO substrate and the electrolyte. To solve these problems, one is that because recombination at FTO substrate cannot be neglected, thin $TiO_2$ layer on FTO substrate as a blocking layer was introduced. The other is to control the morphology of surface on FTO substrate to reduce a loss of electrons. The structural, electrical, and optical characteristics of morphology controlled-FTO thin films as TCO materials were analyzed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Hall Effect Measurement, and UV spectrophotometer. The performance of DSSCs fabricated with morphology controlled FTO substrates was performed using Power Conversion Efficiency (PCE). We will discuss these results in detail in Conference.

  • PDF

A Study on the joining of $Al_2O_3$ to STS 304 with using Cu-7.5wt% Zr Insert metal (Cu-7.5wt% Zr 삽입 금속을 이용한 $Al_2O_3$-STS 304 접합체 계면 조직에 관한 연구)

  • 김병무;한원진;강정윤;이상래
    • Journal of Welding and Joining
    • /
    • v.11 no.1
    • /
    • pp.62-72
    • /
    • 1993
  • Recently there is an increased interest in joining of ceramics to metals and brazing now an accepted method of joining for a wide variety of ceramic to metal combination. The present research work is aimed at establishing the basis of the metal-ceramic joining of $Al_{2}$O$_{3}$ to STS 304 with using Cu-7.5wt% Zr insert metals. Also the microstructures of the brazed joints were observed by using optical microscope and SEM and the reaction products were analyzed by using EDX, WDX and XRD. As a result, the following findings were obtained. The reaction layers of the brazed joints of $Al_{2}$O$_{3}$ to STS 304 are composed of four layers at the bonded interlayer. Double reaction layers are formed at the interface of $Al_{2}$O$_{3}$ insert metal. Layer I was composed of ZrO$_{2}$ particles, Fe-Cr-Ni compounds in Cu matrix, while layer II ZrO$_{2}$ band phase containing Fe-Cr-Ni compounds.

  • PDF

Mechanical Properties of Mica/Epoxy Composite Materials used in Genrator Stator Windings (발전기 고정자 권선에 사용되는 마이카/에폭시 복합재료의 기계적 특성에 관한 연구)

  • 김희동;김희곤;김태완;강도열
    • Electrical & Electronic Materials
    • /
    • v.10 no.4
    • /
    • pp.327-333
    • /
    • 1997
  • Experiments on mechanical fatigue were conducted using the specimens which were cut from hydrogen cooled generator(rated 22kV and 50OMW) stator windings. We have investigated the aged mechanism of mica/epoxy insulation systems under air or hydrogen by both the tensile and compressive loadings. The fracture of generator stator windings is generally affected by mechanical stress. Thus, the tensile strength test were conducted. In this case, the maximum strength and strain are quite different between sound and aged specimens. It is observed that low bonded interface parts of tapes generally have lower strength than those of normal tapes which causes stress. In order to estimate the effects of cyclic load by the electromagnetic forces while the generator starts/stops, the mechanical fatigue test was also conducted. It is confirmed that the equation of expected life depends on stress amplitude and number of cycles. Though the stress amplitude and number of cycles are very tiny, the tensile fatigue of aged specimens under hydrogen atmosphere is bigger than those under air. In the case of hydrogen atmosphere, the tensile stress gives bigger effect than the compressive one.

  • PDF

ADAPTATION OF RESIN-MODIFIED GLASS IONOMER CEMENT TO DENTIN (상아질에 대한 광중합형 글라스 아이오노머 시멘트의 접합도)

  • Cho, Young-Gon
    • Restorative Dentistry and Endodontics
    • /
    • v.22 no.2
    • /
    • pp.792-800
    • /
    • 1997
  • The purpose of this study was to evaluate the adaptation of self-cured glass ionomer cement and resin-modified glass ionomer cement and polyacid-modified resin composite, which are light-cured giass ionomer cements, to dentin surface. Twelve extracted human maxillary and mandibular molar teeth were used in this study. The entire occlusal dentin surfaces of teeth were exposed with Diamond Wheel Saw and smoothed with sand papers (300, 600, 1200grits). They were randomly assigned into 3 groups according to glass ionomer cements used; Control group- Fuji II, Expeimental group 1 - Fuji II LC, Expeimental group 2 - Dyract. According to the manufacturer's directions, three glass ionomer cements were bonded to exposed dentin surfaces of the tooth crown and cured. Crowns and glass ionomers were trimmed after 24hrs and sectioned horizontally and vertically with diamond saw. The interface of glass ionomer cements and dentin was examined under SEM. The results were as follows : 1. Good adatation between glass ionomer cement and dentin on the horizontal section was showed in control and experimental group 1, but the gap of $20{\mu}m$, which was observed distinct separation between glass ionomer cement and dentin, was showed in experimental group 2. 2. Good adatation between glass ionomer cements and dentin on the vertical section was showed in control and experimental group 1, but the gap of 80-$100{\mu}m$ was showed in experimental group 2. 3. Cohesive fracture within glass ionomer cements in control and experimental group 1 was showed, but no cohesive fracture was showed in experimental group 2.

  • PDF