• Title/Summary/Keyword: Bonded core

Search Result 107, Processing Time 0.024 seconds

Fabrication and Its Evaluation of the Light-weight Composite Pallet Plank for an Assembly Line of LCD/PDP by using Honeycomb Sandwich Panel (하니컴 샌드위치 Panel을 이용한 LCD/PDP 생산 공정용 경량 고기능성 복합 신소재 파렛트 제조 및 그 특성 평가)

  • Kim, Yun-Hae;Choi, Byung-Geun;Son, Jin-Ho;Jo, Young-Dae;Eum, Soo-Hyun;Woo, Byung-Hun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.304-310
    • /
    • 2006
  • A typical honeycomb sandwich panel consists of two thin, high-strength facings bonded to a thick, light-weight core. Each component by itself is relatively weak and flexible, but when it combined in a sandwich panel they produce a structure that is stiff, strong, and lightweight. To prove the suitability the honeycomb sandwich structure with prepreg, the mechanical properties of the skin materials and honeycomb sandwich structure were evaluated with the static strength tests. Accordingly, the honeycomb sandwich structure made by autoclave process is available for a panel on LCD/PDP assembly line.

Structural Characterization of Repaired Sandwich Composite Laminates (샌드위치 복합재의 보수 후 특성평가)

  • Kim, Jung-Seok;Lee, Jae-Hun;Chung, Seong-Kyun;Kim, Seung-Chul;Seo, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.132-137
    • /
    • 2007
  • This paper explains compressive behaviors of sandwich composite laminates with adhesively bonded patches. The sandwich composite laminate is used for a train carbody structure and is of an aluminum honeycomb core and CF1263 woven fabric carbon/epoxy faces. The sandwich composite laminates were damaged by low velocity impact. The damaged sandwich composite laminate was repaired using scarf repair method. Then, the strength restoration of it was assessed by compressive test. From the test, it could be known that the compressive strength was restored up to 91% of undamaged one.

  • PDF

Engineering Characteristics of Horizontal Drainage for Stabilization of Dredged Fill (준설매립지반의 안정처리를 위한 수평배수재의 공학적 특성)

  • 이상호;박정용;장연수;박정순;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.563-570
    • /
    • 2001
  • In this study, the charactersistics of horizontal drains used to stabilize the dredged fill are investigated experimentally by doing tensile strength test, discharge capacity test, and filter clogging test. The types of the drains selected for the study are filament type (Tyre-E), embossed type(Type-P) and heat bonded cubic type with the thickness 10mm(Type-010) and 5mm(Type-05). The results of tensile strength and discharge capacity test show that the performance of drain Type-O10 was better than the other drains. This is caused by the fact that the lattice shape core of drain Type-O10 has strong rigidity and minimizes the loss of the sectional area of discharge with increased confining pressure. Analyzing the compatibility of filters by the results of the strength characteristics test and clogging test, the filter of filament type drain produced with polyester clothed polyamide performed well.

  • PDF

Mechanical Behavior of Sandwich Panels with Quasi-Kagome Truss Core Fabricated from Expanded Metals (확장금속망을 이용하여 제작된 준카고메 트러스 중간층을 갖는 샌드위치 판재의 기계적 거동)

  • Lim, Chae-Hong;Lim, Ji-Hyun;Jung, Jae-Gyu;Lim, Jong-Dae;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.9 s.252
    • /
    • pp.1078-1085
    • /
    • 2006
  • Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels with quasi-Kagome truss cores. First, metal sheets with a peculiar pattern of slits were expanded to be meshes, they are crimped into a triangular wave pattern, and then one third of struts were bent reversely to be quasi-Kagome trusses. Finally, two face sheets were bonded on the upper and the lower sides. The bending strength was estimated through elementary mechanics for the sandwich specimens with two kinds of face sheet the results of estimation were compared with the those of finite element analyses and experiments.

Comparison on the Fracture Strength Depending on the Fiber Post and Core Build-up (섬유 강화 포스트와 코어 축성 방법에 따른 파절 강도에 관한 비교)

  • Lee, Ja-Hyoung;Shin, Sooyeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.25 no.3
    • /
    • pp.225-235
    • /
    • 2009
  • A common procedure of restoration of endodonticlly treated tooth with fiber-reinforced post is followed by core build-up after post cementation. However, this technique is complex and time-consuming. The aim of this study was to compare fracture strength of premolar, restored with various methods of core fabrications on fiber-reinforced posts and casting metal restoration. Forty five freshly extracted human mandibular premolars were obtained and devided into 5 groups acconding to the type of post and methods of core build-up. In Group A, D.T. $Light-post^{(R)}$ were cemented with $DUO-LINK^{TM}$ and then $LIGHT-CORE^{TM}$ was used for core restoration. In Group B, D.T. $Light-post^{(R)}$ and $DUO-LINK^{TM}$ were used for cementing in the postspace, and $DUO-LINK^{TM}$ was used again for core restoration. In Group C, $Light-post^{(R)}$ bonding and the core build-up were performed simultaneously by using $DUO-LINK^{TM}$. In Group D, $LuxaPost^{(R)}$ was bonded by using $LuxaCore^{(R)}-Dual$. Again, $LuxaCore^{(R)}-Dual$ was used for core restoration. In Group E, $LuxaPost^{(R)}$ bonding and the core build-up were performed simultaneously by using $LuxaCore^{(R)}-Dual$. Axial reduction was formed parallelly as possible and 45 degree bevel was made at buccal occlusal surface. Crowns were fabricated and cemented. Each tooth was embedded in self-curing acrylic resin to the level of 2mm below the CEJ. Specimens were fixed on universal testing machin such that the axis of the tooth was at 45 degree inclination to the horizontal plane, and compressive force was applied at a crosshead speed of 1mm/min until failure occurred. The mean fracture strength was the highest in group A followed by descending order in group B, D, E and C. However, there were no statistically significant differences between groups with regard to the fracture strength. The type of the post or build-up methods of the core does not seem to influence the fracture strength.

The Study on the Improvement of Mechanical Performance due to Change in Temperature and Sputtering by $SiO_2/Ag$ Material of Bonded Dissimilar Materials with Cylindrical Shape (원통형 이종 접합 소재의 $SiO_2/Ag$스퍼터 증착과 온도 변화에 따른 기계적 특성에 관한 연구)

  • Lee, Seung-Hyun;Choi, Seong-Dae;Lee, Jung-Hyong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.138-145
    • /
    • 2012
  • The material used in this study is dielectric and ferrite. Because of the unique characteristics of the material, it is easily exposed to external shocks and pressure, which cause damage to the product. However, after being processed under high-temperature environment repeatedly, the mechanical strength of the product is greatly increased due to the change of the electrical properties. In this paper, dielectric and bonded ferrite material was tested for the material properties. The equipment for this experiment was produced and tested to allow Cylindrical and Three-dimensional geometry of the product for the vacuum deposition. For Cylindrical shape of the product, in order to obtain the equivalent film thickness, the device is constructed in a vacuum chamber which gives arbitrary revolving and rotating capability. The electrical performance of the product is obtained through this process as well. However, as mentioned above, with repeating processes under high temperature and exposure to external environment, the product is easy to be broken. This experiment has enabled us to find out a stable condition to apply the communication of the RF high frequency to each of the core elements, such as Ferrite and Dielectric which is then used for the mechanical strength of the Raw material, hetero-junction material, Hetero-junction Ag Coating material and hetero-junction Ag Coating SiO2 Coating material respectively.

Effec of different zirconia primers on shear bond strengths of composite resin to bonded zirconia (지르코니아 프라이머 종류에 따른 복합레진-지르코니아의 전단결합강도)

  • Shi, Hong-Bing;Kim, Tae-Seok;Ahn, Jae-Seok;Lee, Jung-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.38 no.3
    • /
    • pp.135-142
    • /
    • 2016
  • Purpose: The aim of this research was to evaluate the influence of different surface treatments on the shear bond strength of zirconia ceramic to composite resin. Methods: Seventy two cylinder-shape (diameter: 5 mm; height: 12 mm) blocks of experimental industrially manufactured Y-TZP ceramic were abraded with $125{\mu}m\;Al_2O_3$ particles and randomly divided into 4 groups. All the materials were categorized as group Gc(control group - composite resin veneering on zirconia surface), Gr - composite resin veneering after surface treatment of Rocatec system (3M ESPE, Seefeld, Germany) group; Gz - composite resin veneering after surface treatment of Zirconia primer (Z-primer, Bisco, U.S.A) group; Gm - composite resin veneering after surface treatment of zirconia primer (Monobond plus, ivoclar vivadent AG, Liechtenstein) group. Two different zirconia primers and Rocatec system were used to zirconia cylinders (n=16) onto the zirconia surface. Zirconia specimens, polished and roughened, were pretreated and composite bilayer cylinders bonded using conventional adhesive techniques. Results: Shear bond strengths were analyzed using single-factor ANOVA(p<0.05). Bond strength values achieved after airbone particle abrasion and zirconia surface pre-treatments(p<0.05). Conclusion: Shear bond strength tests denmonstrated that zirconia primer is a viable method to improved bond strength between zirconia ceramic core and veneering composites.

Thermal-hydraulic Design of A Printed-Circuit Steam Generator for Integral Reactor (일체형원자로 인쇄기판형 증기발생기 열수력학적 설계)

  • Kang, Han-Ok;Han, Hun Sik;Kim, Young-In
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.77-83
    • /
    • 2014
  • The vessel of integral reactor contains its major primary components such as the fuel and core, pumps, steam generators, and a pressurizer, so its size is proportional to the required space for the installation of each component. The steam generators take up the largest volume of internal space of reactor vessel and their volumes is substantial for the overall size of reactor vessel. Reduction of installation space for steam generators can lead to much smaller reactor vessel with resultant decrease of overall cost for the components and related facilities. A printed circuit heat exchanger is one of the compact types of heat exchangers available as an alternative to conventional shell and tube heat exchangers. Its name is derived from the procedure used to manufacture the flat metal plates that form the core of the heat exchanger, which is done by chemical milling. These plates are then stacked and diffusion bonded, converting the plates into a solid metal block containing precisely engineered fluid flow passages. The overall heat transfer area and pressure drops are evaluated for the steam generator based on the concept of the printed circuit heat exchanger in this study. As the printed circuit heat exchanger is known to have much larger heat transfer area density per unit volume, we can expect significantly reduced steam generator compared to former shell and tube type of steam generator. For the introduction of new steam generator, two design requirements are considered: flow area ratio between primary and secondary flow paths, and secondary side parallel channel flow oscillation. The results show that the overall volume of the steam generator can be significantly reduced with printed circuit type of steam generator.

Tensile strength of bilayered ceramics and corresponding glass veneers

  • Anunmana, Chuchai;Champirat, Tharee;Jirajariyavej, Bundhit
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.151-156
    • /
    • 2014
  • PURPOSE. To investigate the microtensile bond strength between two all-ceramic systems; lithium disilicate glass ceramic and zirconia core ceramics bonded with their corresponding glass veneers. MATERIALS AND METHODS. Blocks of core ceramics (IPS e.max$^{(R)}$ Press and Lava$^{TM}$ Frame) were fabricated and veneered with their corresponding glass veneers. The bilayered blocks were cut into microbars; 8 mm in length and $1mm^2$ in cross-sectional area (n = 30/group). Additionally, monolithic microbars of these two veneers (IPS e.max$^{(R)}$ Ceram and LavaTM Ceram; n = 30/group) were also prepared. The obtained microbars were tested in tension until fracture, and the fracture surfaces of the microbars were examined with fluorescent black light and scanning electron microscope (SEM) to identify the mode of failure. One-way ANOVA and the Dunnett's T3 test were performed to determine significant differences of the mean microtensile bond strength at a significance level of 0.05. RESULTS. The mean microtensile bond strength of IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram ($43.40{\pm}5.51$ MPa) was significantly greater than that of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram ($31.71{\pm}7.03$ MPa)(P<.001). Fluorescent black light and SEM analysis showed that most of the tested microbars failed cohesively in the veneer layer. Furthermore, the bond strength of Lava$^{TM}$ Frame/Lava$^{TM}$ Ceram was comparable to the tensile strength of monolithic glass veneer of Lava$^{TM}$ Ceram, while the bond strength of bilayered IPS e.max$^{(R)}$ Press/IPS e.max$^{(R)}$ Ceram was significantly greater than tensile strength of monolithic IPS e.max$^{(R)}$ Ceram. CONCLUSION. Because fracture site occurred mostly in the glass veneer and most failures were away from the interfacial zone, microtensile bond test may not be a suitable test for bonding integrity. Fracture mechanics approach such as fracture toughness of the interface may be more appropriate to represent the bonding quality between two materials.

Fabrication and Characterization of Aluminum Honeycomb Panel (경량 알루미늄 허니콤 판재의 제작 및 특성 평가)

  • Kim, Kee Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.666-671
    • /
    • 2018
  • A honeycomb panel is a plate made by attaching two surface plateson eitherside of a honeycomb core. The honeycomb plate hasexcellent specific strength and energy absorption and is suitable for use in regions where good impact resistance is required. Recently, with the increasing the need for a lightweight design to facilitate transportation, numerous studies have been conducted using aluminum honeycomb plates as body materials for vehicles such as automobiles and high-speed trains. In addition, honeycomb plates have excellent sound deadening properties, as well as excellent heat insulation and durability. Savings in weight using lightweight materials such as aluminum alloy for honeycomb panel's skin can lead to increase fuel economy and reduction in air pollution. In this study, in order to improve the design technology of the honeycomb plate material, the manufacturing technology of the aluminum honeycomb core and honeycomb plate material and various mechanical properties of the honeycomb plate were evaluated. From the results, it was found that the design of the manufacturing process of the aluminum honeycomb plate, as well as itsproduction and characteristics, were improved. The resulting excellent energy absorption capability of the honeycomb plate was due to the repetitive core buckling, indicating that the higher the compressive strength, the higher the strength per bonded area.