• Title/Summary/Keyword: Bonded core

검색결과 107건 처리시간 0.022초

와이어를 이용하여 제작된 옥데트 트러스 샌드위치 판재의 압축 및 굽힘 거동 (Compressive and Bending Behavior of Sandwich Panels with Octet Truss Core Fabricated from Wires)

  • 임지현;나성준;구만회;강기주
    • 대한기계학회논문집A
    • /
    • 제29권3호
    • /
    • pp.470-476
    • /
    • 2005
  • Ultra light metal structures have been studied for several years because of their superior specific stiffness, strength and potential of multi functions. Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels having octet truss cores. Wires bent in a shape of triangular wave were assembled to construct an Octet truss core and it was bonded with two face sheets to be a sandwich panel. The bending & compressive strength and stiffness were estimated through elementary mechanics for the sandwich specimens with two kinds of face sheets and the results were compared with the ones measured by experiments. Some aspects of assembling and mechanical behavior were discussed compared with Kagome core fabricated from wire, which had been introduced in the authors' previous work.

주기적(週期的) 조습처리(調濕處理)가 파티클보드와 콤플라이의 치수 안정성(安定性)에 미치는 영향(影響) (Effects of Cyclic Humidification on Dimensional Stability of Particleboard and Com-Ply)

  • 이필우;김대준;박희준
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권3호
    • /
    • pp.29-37
    • /
    • 1992
  • This research was carried out to investigate the effects of cyclic humidification on the dimensional stability of particleboard manufactured according the three specific gravity levels and com-ply fabricated with a core of particleboard and veneer or plywood as the face and back materials. Both the particleboard and com-ply were subjected to four cycles of 50-90-50% relative humidity. The results are summarized as follows: Particleboard and com-ply followed a clear pattern of increasing dimensions and weight on the adsorption cycle and decreasing dimensions and weight on the humidification cycle. After the fourth cycle, the dimensions and weight of both particleboard and com-ply were greater than those originally measured. The greater part of increase in occurred during the first humidification cycle. The specific gravity of particleboard has a significant effect thickness and volume change. The dimensional stability of com-ply was better than that of particleboard. In addition, the dimensional stability of com-ply bonded with plywood was better than that of com-ply bonded with veneer.

  • PDF

Physical and Mechanical Properties of Three-layer Particleboards Bonded With UF and UMF Adhesives

  • Iswanto, Apri Heri;Simarmata, Janrahman;Fatriasari, Widya;Azhar, Irawati;Sucipto, Tito;Hartono, Rudi
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.787-796
    • /
    • 2017
  • A low dimensional stability and poor bending strength properties were main problems in particleboard manufacturing. The objective of this research was to evaluate the effect of mixed wood species and urea-formaldehyde (UF) or urea-melamine-formaldehyde (UMF) resins on the physical and mechanical properties of three-layer particleboards. The ratio of face/core/back layer was 1 : 2 : 1. The resin content of 12% for both UF resins and UMF resins (UF/MF = 70/30% w/w) was used. The results of this study showed that the utilization of S.mahagony shaving using both UF and UMF resins caused a decrease in the thickness swelling and water absorption of the boards. Thickness swellings of particleboard made of Sengon/Sengon/Sengon (SSS), Mahogany/Mahogany/Mahogany (MMM), Sengon/Mahogany/Sengon (SMS), and Mahogany/Sengon/Mahogany (MSM) were in the range of 23%, 12~16%, 14~16%, and 13~21%, respectively. The board bonded with UMF resin demonstrated better dimensional stability than that bonded with UF resin alone. Modulus of elasticity (MOE) and modulus of rupture (MOR) of particleboards made of S. mahagony shaving in the surface layer in both MMM and MSM boards were better than those of the SSS and SMS. MOE of MMM and MSM board was in the ranges of 24,000 to $26,000kg.cm^{-2}$ and 18,000 to $21,000kg.cm^{-2}$ respectively. Meanwhile, the MOR of board was in the ranges of 200 to $240kg.cm^{-2}$ and 190 to $228kg.cm^{-2}$, respectively.

Buckling and vibration analyses of MGSGT double-bonded micro composite sandwich SSDT plates reinforced by CNTs and BNNTs with isotropic foam & flexible transversely orthotropic cores

  • Mohammadimehr, M.;Nejad, E. Shabani;Mehrabi, M.
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.491-504
    • /
    • 2018
  • Because of sandwich structures with low weight and high stiffness have much usage in various industries such as civil and aerospace engineering, in this article, buckling and free vibration analyses of coupled micro composite sandwich plates are investigated based on sinusoidal shear deformation (SSDT) and most general strain gradient theories (MGSGT). It is assumed that the sandwich structure rested on an orthotropic elastic foundation and make of four composite face sheets with temperature-dependent material properties that they reinforced by carbon and boron nitride nanotubes and two flexible transversely orthotropic cores. Mathematical formulation is presented using Hamilton's principle and governing equations of motions are derived based on energy approach and applying variation method for simply supported edges under electro-magneto-thermo-mechanical, axial buckling and pre-stresses loadings. In order to predict the effects of various parameters such as material length scale parameter, length to width ratio, length to thickness ratio, thickness of face sheets to core thickness ratio, nanotubes volume fraction, pre-stress load and orthotropic elastic medium on the natural frequencies and critical buckling load of double-bonded micro composite sandwich plates. It is found that orthotropic elastic medium has a special role on the system stability and increasing Winkler and Pasternak constants lead to enhance the natural frequency and critical buckling load of micro plates, while decrease natural frequency and critical buckling load with increasing temperature changes. Also, it is showed that pre-stresses due to help the axial buckling load causes that delay the buckling phenomenon. Moreover, it is concluded that the sandwich structures with orthotropic cores have high stiffness, but because they are not economical, thus it is necessary the sandwich plates reinforce by carbon or boron nitride nanotubes specially, because these nanotubes have important thermal and mechanical properties in comparison of the other reinforcement.

재활용을 고려한 금속-열가소성 복합재료 하이브리드 접착 구조의 분리 기술 개발 (Development of Separation Technology for Adhesively Bonded Hybrid Structures of Metals and Thermoplastic Composites Considering Recycling)

  • 한수호;황희윤;배민관;박상언;장홍규
    • Composites Research
    • /
    • 제31권4호
    • /
    • pp.128-132
    • /
    • 2018
  • 최근 들어 금속과 복합재료를 혼합하여 자동차 부품을 제작함으로써 구조의 기능성을 만족하면서도 무게를 줄이고자 하는 연구가 진행되고 있다. 환경문제로 인해 전기전자제품 및 자동차의 재활용 규제가 강화되고 있음을 고려하여, 자동차 재활용 업체 관계자의 설문을 통하여 금속과 복합재료 하이브리드 구조의 재활용율 향상을 위한 요소 기술을 도출하였다. 필요한 요소 기술 중 기술적으로 해결할 수 있는 금속-복합재료 하이브리드 접착 구조의 분리 기술에 대한 기초 연구를 진행하였으며, 재활용 현장에서 쉽게 도입할 수 있는 분리 기법을 제안하였다.

Effect of cement type, luting protocol, and ceramic abutment material on the shade of cemented titanium-based lithium disilicate crowns and surrounding peri-implant soft tissue: a spectrophotometric analysis

  • Peter Gehrke;Maria Julia Pietruska;Johannes Ladewig;Carsten Fischer;Robert Sader;Paul Weigl
    • The Journal of Advanced Prosthodontics
    • /
    • 제16권4호
    • /
    • pp.231-243
    • /
    • 2024
  • PURPOSE. The objective of the study was to analyze the impact of cement, bonding pretreatment, and ceramic abutment material on the overall color results of CAD-CAM ceramic crowns bonded to titanium-based hybrid abutments. MATERIALS AND METHODS. For single implant restoration of a maxillary lateral incisor a total of 51 CAD-CAM-fabricated monolithic lithium disilicate crowns were fabricated and subsequently bonded onto 24 lithium disilicate Ti-base abutments, 24 zirconia Ti-base abutments and 3 resin abutment replicas as a control group. The 48 copings were cemented with three definitive and one provisional cement on both grit-blasted and non-blasted Ti-bases. The color of each restoration and surrounding artificial gingiva was measured spectrophotometrically at predefined measuring points and the CIELAB (ΔEab) color scale values were recorded. RESULTS. The color outcome of ceramic crowns bonded to hybrid abutments and soft tissues was affected differently by cements of different brands. Grit-blasting of Ti-bases prior to cementing CAD-CAM copings affected the color results of allceramic crowns. There was a significant difference (P = .038) for the median ΔE value between blasted and non-blasted reconstructions at the cervical aspect of the crown. Full-ceramic crowns on zirconia Ti-base abutments exhibited significantly lower ΔE values below the threshold of visibility (ΔE 1.8). In all subcategories tested, the use of a highly opaque temporary cement demonstrated the lowest median ΔE for both the crown and the artificial gingiva. CONCLUSION. Various cements, core ceramic materials and airborne particle abrasion prior to bonding can adversely affect the color of Ti-base supported ceramic crowns and peri-implant soft tissue. However, zirconia CAD-CAM copings and an opaque cement can effectively mask this darkening.

발포 알루미늄으로 된 경사진 이중외팔보 시험편의 접착면에서의 전단 실험 및 시뮬레이션 해석 (Shear Experiment and Simulation Analysis at Bonded Surface of Specimen Tapered Double Cantilever Beam with Expanded Aluminum)

  • 손홍붕;전성식;조재웅
    • Composites Research
    • /
    • 제27권6호
    • /
    • pp.248-253
    • /
    • 2014
  • 본 연구에서는 발포 알루미늄으로 구성된 접착 구조물에서의 접합면에 대한 파괴 특성을 조사하기 위하여 각도를 변수로 정하고 TDCB 시험편을 설계하였다. 이 시험편들은 길이는 200 mm이고 시험편에 대한 접착면의 경사 각도는 $6^{\circ}$, $8^{\circ}$, $10^{\circ}$$12^{\circ}$인 네 가지로 모델링을 하였다. 이 시험편들의 실험 및 해석을 분석한 결과, 경사면 각도가 $6^{\circ}$, $8^{\circ}$, $10^{\circ}$$12^{\circ}$인 경우에 시험편들의 최대 하중은 각각 약 120 N, 137 N, 154 N과 171 N으로 발생하였다. 해석의 결과 값이 실험치에 가까워져 많은 차이를 보이지 않는 것을 확인할 수 있다. 따라서 이와 같은 연구 방법을 응용하여 실험 대신 시뮬레이션을 통하여 접착제로 접착된 알루미늄 폼으로 된 재료의 전단 거동에 관한 물성치를 효율적으로 파악할 수 있다고 사료된다.

광섬유 A-EFPI 센서를 이용한 직교적층 복합재료의 표피층 및 내부층의 변형률 해석 (Strain Analysis in the Skin and Core Layers of Cross-Ply Composite Laminates Using A-EFPI Optical Fiber Sensor)

  • 우성충;박래영;최낙삼;권일범
    • Composites Research
    • /
    • 제17권5호
    • /
    • pp.15-24
    • /
    • 2004
  • 유리 섬유 강화 플라스틱 직교적층판의 내부층과 표피층의 길이방향 변형률을 삽입된 절대변형 외부 페브리 페로 간섭 센서를 이용하여 측정하였다. 투과식 광학현미경을 이용하여 삽입된 A-EFPI 센서 주위의 파손거동을 관찰하였다. 시험편 표면부의 변형률 측정을 위해 포일 형식의 스트레인 게이지를 시험편 아래 위 표면부에 부착하였다. 또한 삽입된 A-EFPI 센서로 측정한 내부층과 표피층의 길이방향 변형률 값은 스트레인 게이지로 측정한 시험편 표면의 변형률 값 보다 다소 크게 나타났다. 균일 응력 모델을 기초로 한 3차원 유한요소해석을 통해 실험 결과의 타당성을 확인하였으며 내부층의 큰 변형률은 많은 횡단형 균열의 발생을 야기시켰는데 이로 인해 내부층에 삽입된 광섬유센서의 고장시 변형률이 급격히 낮아졌다.

Novel Low-Volume Solder-on-Pad Process for Fine Pitch Cu Pillar Bump Interconnection

  • Bae, Hyun-Cheol;Lee, Haksun;Eom, Yong-Sung;Choi, Kwang-Seong
    • 마이크로전자및패키징학회지
    • /
    • 제22권2호
    • /
    • pp.55-59
    • /
    • 2015
  • Novel low-volume solder-on-pad (SoP) process is proposed for a fine pitch Cu pillar bump interconnection. A novel solder bumping material (SBM) has been developed for the $60{\mu}m$ pitch SoP using screen printing process. SBM, which is composed of ternary Sn-3.0Ag-0.5Cu (SAC305) solder powder and a polymer resin, is a paste material to perform a fine-pitch SoP in place of the electroplating process. By optimizing the volumetric ratio of the resin, deoxidizing agent, and SAC305 solder powder; the oxide layers on the solder powder and Cu pads are successfully removed during the bumping process without additional treatment or equipment. The Si chip and substrate with daisy-chain pattern are fabricated to develop the fine pitch SoP process and evaluate the fine-pitch interconnection. The fabricated Si substrate has 6724 under bump metallization (UBM) with a $45{\mu}m$ diameter and $60{\mu}m$ pitch. The Si chip with Cu pillar bump is flip chip bonded with the SoP formed substrate using an underfill material with fluxing features. Using the fluxing underfill material is advantageous since it eliminates the flux cleaning process and capillary flow process of underfill. The optimized interconnection process has been validated by the electrical characterization of the daisy-chain pattern. This work is the first report on a successful operation of a fine-pitch SoP and micro bump interconnection using a screen printing process.

바이오의약품의 단백질 분리 및 정제를 위한 Avantor® ACE® 와이드 포어 HPLC 컬럼 가이드 (Avantor® ACE® Wide Pore HPLC Columns for the Separation and Purification of Proteins in Biopharmaceuticals)

  • Matt James;Mark Fever;Tony Edge
    • FOCUS: LIFE SCIENCE
    • /
    • 제1호
    • /
    • pp.3.1-3.7
    • /
    • 2024
  • The article discusses the critical role of chromatography in the analysis and purification of proteins in biopharmaceuticals, emphasizing the importance of comprehensive characterization for ensuring their safety and efficacy. It highlights the use of Avantor® ACE® HPLC columns for the separation and purification of proteins, focusing on the analysis of intact proteins using reversed-phase liquid chromatography (RPLC) with fully porous particles. This article also details the application of different mobile phase additives, such as TFA and formic acid, and emphasizes the advantages of using type B ultra-pure silica-based columns for efficiency and peak shape in biomolecule analysis. Additionally, it addresses the challenges of analyzing intact proteins due to slow molecular diffusion and introduces the concept of solid-core (or superficially porous) particles, emphasizing their benefits over traditional porous particles for the analysis of therapeutic proteins. Furthermore, it discusses the development of Avantor® ACE® UltraCore BIO columns, specifically designed for the high-efficiency separation of large biomolecules, such as proteins, and demonstrates their effectiveness in achieving high-resolution separations, even for higher molecular weight proteins like monoclonal antibodies (mAbs). In addition, it underscores the complexity of analyzing and characterizing intact protein biopharmaceuticals, requiring a range of analytical techniques and the use of wide-pore stationary phases, operated at elevated temperatures and with relatively shallow gradients. It highlights the comprehensive range of options offered by Avantor® ACE® wide pore columns, including both fully porous and solid-core particles, bonded with a variety of complementary stationary phase chemistries to optimize selectivity during method development. The use of ultrapure and highly inert base silica is emphasized for enabling the use of lower concentrations of mobile phase modifiers without compromising analyte peak shape, particularly beneficial for LC-MS applications. Then the article concludes by emphasizing the significance of reversed-phase liquid chromatography and its compatibility with mass spectrometry as a valuable tool for the separation and analysis of intact proteins and their closely related variants in biopharmaceuticals.

  • PDF