• Title/Summary/Keyword: Bond Graphs

Search Result 20, Processing Time 0.021 seconds

Simulation using bond graphs for a hydraulic system driving large rotational inertia

  • Lee, Kyo-Il;Choi, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.921-927
    • /
    • 1988
  • The process and results of computer simulation using bond graphs for a hydraulic system driving large rotational inertia are presented in this paper. As the large rotational inertia and its application characteristics, control criteria of this system is not position-control nor velocity-control but appropriate acceleration, deceleration and inching ability. All the components' nonlinear characteristics are modelled using bond graphs. The equationing and solution process is carried out by a package. Finally it is concluded that modelling of this kind of system by bond graphs and using a software as its solver shows good approximated results to actual experimental data, and that the proposed modelling may be useful to actual design process for this kind of hydraulic system.

  • PDF

Understanding of dynamic system properties in the frequency domain using bond graphs (본드선도를 이용한 동적시스템의 주파수역 특성이해)

  • Park, Jeon-Soo;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.4
    • /
    • pp.801-810
    • /
    • 1998
  • Modeling and analysis of dynamic systems generally demand their resutls to be interpreted each other with a physical sense. It sometimes requires that there should exist a unified tool in the treatment of dynamic systems which can be applied to both their modeling and analysis equally. This paper shows how models just after the progress of modeling via bond graph standards are converted to ones which are appropriate for analyzing a dynamic system in the frequency domain. Four bond graph prototypes are introduced to obtain frequency properties of dynamic systems such as zero stability, relative order, zero and pole dynamics, etc. directly from bond graphs, and the method are proposed which reduces nearly all models of bond graph standards to one of the prototypes without any change of physical similarity. This procedure as a tool for the structural reduction of bond graphs and finding frequency properties of a dynamic system is further investigated to survey its effectiveness through an example.

A new stability and sensitivity design and diagnosis approach

  • Sari, Ali;Korkmaz, Kasim A.
    • Steel and Composite Structures
    • /
    • v.23 no.6
    • /
    • pp.683-690
    • /
    • 2017
  • In the stability and sensitivity design and diagnosis approaches, there are various methodologies available. Bond graph modeling by lumping technique is one of the universal methodologies in methodical analysis used by many researchers in all over the world. The accuracy of the method is validated in different arenas. Bond graphs are a concise, pictorial representation of the energy storage, dissipation and exchange mechanisms of interacting dynamic systems, subsystems and components. This paper proposes a bond graph modeling for distributed parameter systems using lumping techniques. Therefore, a steel frame structure was modeled to analyze employing bond graph modeling of distributed system using lumping technique. In the analytical part, the effectiveness of bond graphs to model this system is demonstrated. The dynamic responses of the system were computed and compared with those computed from the finite element analysis. The calculated maximum deflection time histories were found to be comparable. The sensitivity and the stability of the steel frame structure was also studied in different aspects. Thus, the proposed methodology, with its simplicity, can be used for stability and sensitivity analyses as alternative to finite element method for steel structures. The major value brought in the practical design is the simplicity of the proposed method for steel structures.

An Analytical Synthesis Method of Dynamic Systems in Terms of Bond Graphs (본드선도를 이용한 동적시스템의 해석적 종합방법)

  • Park, Jeon-Su;Kim, Jong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3507-3515
    • /
    • 1996
  • This paper presents an attempt to find the physical structure of dynamic systems which achieves the behavior of a given system function. The scheme pursued by the paper would be regarded as synthesizing dynamic systems, and a method to synthesize them analytically is proposed by means of bond graph prototypes. The method adopts several conceptsused to synthesize networks in the electrical field, but yet deconstrates its own strengths such as the freedom from assigning causality and determining junction types. Also, itis shown that this method has further advantages in reticulating a given specification into feedforward and feedback components relative to network synthesis and the method is examined though an example to trace the outline of the analytical synthesis of dynamic systems using bond graph prototypes.

EXTREMAL ATOM-BOND CONNECTIVITY INDEX OF CACTUS GRAPHS

  • ASHRAFI, ALI REZA;DEHGHAN-ZADEH, TAYEBEH;HABIBI, NADER
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.3
    • /
    • pp.283-295
    • /
    • 2015
  • The atom-bond connectivity index of a graph G (ABC index for short) is defined as the summation of quantities $\sqrt{\frac{d(u)+d(v)-2}{d(u)d(v)}}$ over all edges of G. A cactus graph is a connected graph in which every block is an edge or a cycle. The aim of this paper is to obtain the first and second maximum values of the ABC index among all n vertex cactus graphs.

Computer Aided Bondgraphs Modeling and Simulation of Hydrostatic Transmission (유압 트랜스미션의 본드선도 모델링 및 시뮬레이션)

  • Woo, Seongwoo;Park, Raeseok;Lee, Jongkil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.12
    • /
    • pp.54-62
    • /
    • 1996
  • To get the time response characteristics of the hydrostatic transmission, seaborne winch is modelde by using bond graphs. After modeling of its basic elements, it is represented as power flow, and the determination of variable causality. The state equations are derived by using CAMP. As dynamic stabilites and solutions are investigated by perturbation method and direct integration, winch system is stable. Simulations are performed under the conditions of low speed, high speed, and maximum tension. The pressure and flow rate of the hydrostatic transmission have a big overshoot. But when it is comparaed to the empirical data with simulation results, it is similar to each other. When a lead compensator is applied to improve response characteristics of the hydrostatic transmission, rise time and overshoot of the system are improved.

  • PDF

A Study on the Induction Method of Transfer Function of Bond Graph using Mason's Rule (메이슨의 공식을 이용한 본드그래프의 전달함수 유도법에 관한 연구)

  • 한창수;오재응
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.66-75
    • /
    • 1998
  • In many case of optimal design and sensitivity analysis, obtaining of transfer function between input and output variables is a difficult and time-consuming problem. The bond graph modeling is a method that is used for making it easy to analyze complex systems composed of mechanical and electrical parts. It gives us a simple and systematic tool to get state-space equations easily. And we can obtain the transfer function graphically using bond graph and Mason's rule. This paper shows how bond graphs are converted to block diagram and how Mason's rule is applied. And the simple direct method to obtain transfer function from bond graph is introduced. As a example, induction of transfer function of electric power steering composed of mechanical and electrical parts will be done.

  • PDF

Bond Gragh Prototypes: A General Model for Dynamic Systems in Terms of Bond Graphs (표준본드선도: 본드선도에 의한 동적시스템의 일반모델)

  • Park, Jeon-Soo;Kim, Jong-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1414-1421
    • /
    • 1997
  • This paper examines the physics and mechanics governing the dynamic interaction between physical systems and suggests the four structures of bond graph prototypes, considered as a general model that can promise their dynamic behavior physically resonable. The bond graph prototypes originating from the paper are more realistic junction structures than those used to model dynamic systems conventionally by bond graph standards in whether physical constraints are involved or not when the energy exchange between two dynamic components arises. It is shown that the bond graph prototypes are dynamic or energetic in their describing equations compared to the bond graph standards, and connectivity and causality are properties of dynamic systems upon which the steps developed in this paper for the bond graph prototypes are wholly based and their definitions an concepts are highly emphasized all through the paper.

Understanding Automobile Roll Dynamics and Lateral Load Transfer Through Bond Graphs

  • ;Deam Karnopp
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.34-44
    • /
    • 1998
  • It is clear that when an automobile negotiates a curve the lateral acceleration causes an increase in tire normal load for the wheels on the outside of the curve and a decrease in load for the inside wheels. However, just how the details of the suspension linkages and the parameters of the springs and shock absorbers affect the dynamics of the load transfer os not easily understood. One even encounters the false idea that since it is the compression and extension of the main suspension springs spring body role which largely determines the changes in normal load, of roll could be reduced, the load transfer would also be reduced. Using free body diagrams, one can explain quite clearly how the load is transferred for steady state cornering, and, using complex multibody models of particular vehicles one can simulate in good fidelity how load transfer occurs dynamically. Here we adopt a middle ground by using the concept of roll center and using a series of half-car bond graph models to point out main effects. Since bond graph junction structures automatically and consistently constrain geometric and force variables simultaneously, they can be used to point out hidden assumptions of other simplified vehicle models.

  • PDF

Evolutionary Design for Multi-domain Engineering System - Air Pump Redesign

  • Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.228-233
    • /
    • 2006
  • This paper introduces design method for air pump system using bond graph and genetic programming to maximize outflow subject to a constraint specifying maximum power consumption. The air pump system is a mixed domain system which includes electromagnetic, mechanical and pneumatic elements. Therefore an appropriate approach for a better system for synthesis is required. Bond graphs are domain independent, allow free composition, and are efficient for classification and analysis of models. Genetic programming is well recognized as a powerful tool for open-ended search. The combination of these two powerful methods, BG/GP, was tested for redesign of air pump system.