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EXTREMAL ATOM-BOND CONNECTIVITY INDEX OF

CACTUS GRAPHS

Ali Reza Ashrafi, Tayebeh Dehghan-Zadeh, and Nader Habibi

Abstract. The atom-bond connectivity index of a graph G (ABC index

for short) is defined as the summation of quantities
√

d(u)+d(v)−2
d(u)d(v)

over

all edges of G. A cactus graph is a connected graph in which every block
is an edge or a cycle. The aim of this paper is to obtain the first and
second maximum values of the ABC index among all n vertex cactus
graphs.

1. Introduction

Suppose G is a simple connected graph with vertex and edge sets V (G) and
E(G), respectively. A block of G is a maximal connected subgraph of G without
cut-vertex. A cactus is a connected graph in which every block is an edge or a
cycle [18, p. 160]. These are connected graphs in which each edge belongs to
at most one cycle. An example of a cactus graph is depicted in Figure 1.

Figure 1. Examples of cactus graphs.

Cactus graphs have several applications in computer science and biology
and so it is a topic of interest among many researchers in different scientific
disciplines. In [1, 6], it is proved that some graph problems which are NP-hard
for general graphs can be solved in polynomial time for cacti. On the other
hand, in [15] a number of combinatorial optimization problems are presented
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that may be solved for cactus graphs in polynomial time. We refer the inter-
ested readers to Paten et al. [17], for some applications of cacti in examining
chromosomal rearrangements.

If G is a connected graph having n vertices and m edges, then c = m−n+1
is called the cyclomatic number of G and conventionally, G is said to be cyclic
if c > 0. In particular, if c = 1, 2, 3, 4, then we call G to be unicyclic, bicyclic,
tricyclic and tetracyclic graphs, respectively. The degree, neighbor set of u
and minimum degree of the graph G are denoted by d(u), NG(u) and δ(G),
respectively. For non-adjacent vertices u and v, G + uv is a graph obtained
from G by connecting u and v. The complete and star graph on n vertices are
denoted by Kn and Sn, respectively.

The ABC index of G is defined as ABC(G) =
∑

uv∈E(G)

√

d(u)+d(v)−2
d(u)d(v) .

This graph invariant was introduced by Estrada et al. [8]. Estrada [7], proved
that the ABC index provides a good model for the stability of linear and
branched alkanes as well as the strain energy of cycloalkanes. Recently, several
mathematicians spent their time to discover the mathematical properties of
this graph invariant.

Chen and Guo [2] characterized the catacondensed hexagonal systems with
this graph invariant, and prove that the ABC index of a graph decreases when
any edge is deleted. Consequently, they proved that the graph with n vertices
and the maximum ABC index is the complete graph Kn. Gutman et al. [14]
presented several open questions about minimum ABC index among n vertex
trees. Gutman and Furtula [13] determined the structure of trees with a single
high-degree vertex and smallest ABC index.

In [11], the authors established some sharp lower and upper bounds on
the ABC index in terms of the number of edges, the maximum degree, and
the number of pendant vertices, and characterize the corresponding graphs
which attain these bounds. They also considered the extremal ABC indices
of unicyclic graphs and unicyclic chemical graphs. Xing et al. [19], obtained
an upper bound and extremal graphs for the ABC index of molecular graphs
with fixed number of vertices and number of edges. They also determined
the n vertex unicyclic graphs with the maximum, the second, the third and
the fourth maximum ABC indices, and the n vertex bicyclic graphs, n ≥ 5,
with the maximum and the second maximum ABC indices, respectively. The
present authors [5], characterized tetracyclic graphs with the maximum and
second maximum ABC index.

Gan et al. [12] characterized the trees with given degree sequences, extremal
with respect to the ABC index. Furtula et al. [10], studied the extremal prob-
lem for the ABC index. They obtained tight upper and lower bounds for the
ABC indices of chemical trees. They also proved that, among all trees, the star
tree, Sn, has maximal ABC value. Das [3], presented lower and upper bounds
for this graph invariant in the classes of graphs and trees. He characterized also
the graphs for which these bounds are best possible. Finally, in [9], one of us
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(ARA) proved some inequalities for the ABC index of some graph operations.
They also proved their bounds are tight.

The aim of this paper is to continue this program by computing the first
and second maximum values of ABC index in the class of n vertex cactus
graphs, n ≥ 3. We assume that G(n, r) denotes the set of all cactus graphs
containing n vertices and r cycles. Clearly G(n, 0), G(n, 1) and G(n, 2) are
trees, unicyclic graphs and bicyclic graphs, respectively. The graph obtained
from Sn by connecting two pendants is denoted by U3,n−3.

For the sake of completeness we mention here five crucial lemmas as follows:

Lemma 1.1 ([20, Lemma 1]). Suppose that f(x, y)=
√

x+y−2
xy

=
√

1
x
+ 1

y
− 2

xy
,

x, y ≥ 1. Then for a fixed y ≥ 2, f(x, y) is descending for x.

Lemma 1.2 ([4, Theorem 2.1]). Suppose that G is a simple graph with two

non-adjacent vertices u and v. Then

ABC(G+ uv) > ABC(G).

Lemma 1.3 ([10, Theorem 2]). Suppose that G ∈ G(n, 0), n ≥ 3. Then

ABC(G) ≤
√

(n− 1)(n− 2). The equality holds if and only if G ∼= Sn.

Lemma 1.4 ([19, Theorem 4.1]). Suppose G ∈ G(n, 1), n ≥ 3. Then

ABC(G) ≤ (n− 3)

√

n− 2

n− 1
+

3
√
2

2
.

Furthermore, the equality is satisfied if and only if G ∼= U3,n−3.

Lemma 1.5 ([19, Theorem 5.3]). Suppose G ∈ G(n, 2), n ≥ 5. Then G = S3,3
n

has maximum ABC index among all bicyclic graphs. Moreover, the ABC index

of maximum graph is equal to:

ABC(G) = (n− 5)

√

n− 2

n− 1
+ 3

√
2,

where S3,3
n is a bicyclic graph obtained from Sn by connecting two pairs of

pendants in such a way that the resulting graph has exactly n− 5 pendants.

2. Main results

In this section, the maximum and second maximum ABC index among all
cactus graphs with n vertices, n ≥ 3, are calculated. In Table 1, the graphs
have the maximum and second maximum of ABC index among n vertex cacti,
3 ≤ n ≤ 7, are shown.

The set of all cactus graphs containing r triangles and n− 2r− 1 edges with
a common vertex is denoted by G0(n, r). Let us define

h(n, r) =
3
√
2

2
r + (n− 2r − 1)

√

n− 2

n− 1
,

where 0 ≤ r ≤
⌊

n−1
2

⌋

.
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Table 1. The n vertex cacti, 3 ≤ n ≤ 7.

n The First Maximum The Second Maximum

3

4

5

6

7

Theorem 2.1. Suppose G ∈ G(n, r), n ≥ 3. Then

ABC(G) ≤ h
(

n, r =
⌊n− 1

2

⌋)

.

The equality holds if and only if G ∼= G0
(

n,
⌊

n−1
2

⌋)

.

Proof. IfG∈G0
(

n,
⌊

n−1
2

⌋)

, then the proof is clear. SupposeG /∈G0
(

n,
⌊

n−1
2

⌋)

.

In a similar way as in [16, Theorem 3.1], we proceed by induction to prove that

ABC(G) < h
(

n, r =
⌊

n−1
2

⌋)

. If r = 0, 1, then by Lemmas 1.3 and 1.4 the

proof is clear. So, we can assume that r ≥ 2 and so n ≥ 5. If n = 5, then r = 2
and G0(5, 2) is satisfied our condition. Suppose n ≥ 6, r ≥ 2 and G ∈ G(n, r).
Our main proof will consider the following two cases:
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Case 1: δ(G) = 1. Let u be a pendant vertex adjacent to vertex v of
degree d. So, NG(v) \ {u} = {y1, . . . , yd−1}, 2 ≤ d ≤ n − 1. Assume that
d(y1) = d(y2) = · · · = d(yk−1) = 1 and d(yi) ≥ 2, when k ≤ i ≤ d− 1. If k = 1,
then d(yi) ≥ 2, 1 ≤ i ≤ d − 1, and so it is enough to consider the case that
k > 1. Define G′ = G − u − y1 − y2 − · · · − yk−1. Then G′ ∈ G(n − k, r) and
so by induction hypothesis,

ABC(G′) < h(n− k, ⌊n− k − 1

2
⌋).

By applying Lemma 1.2, we have:

ABC(G) = ABC(G′) +

k
∑

i=1

f(1, d) +

d−1
∑

i=k

[f(d, d(yi))− f(d− k, d(yi))]

≤ ABC(G′) + k

√

d− 1

d

<
3
√
2

2
r + (n− k − 2r − 1)

√

n− k − 2

n− k − 1
+ k

√

d− 1

d

< h(n, ⌊n− 1

2
⌋),

as desired.
Case 2: δ(G) ≥ 2. By definition of cactus graph, there exists an edge

u0u1 ∈ E(G) such that d(u0) = d(u1) = 2, NG(u0) = {u1, u2} and d(u2) ≥ 3.
Since n ≥ 6 and r ≥ 2, it is enough to investigate the following two subcases.

Subcase 2.1: u1u2 6∈ E(G). Let G′ = G − u0 + u1u2. So, G′ ∈ G(n − 1, r),
r = ⌊n−1

2 ⌋ and by induction hypothesis ABC(G′) < h(n − 1, ⌊n−1
2 ⌋ − 1). So,

by Lemma 1.1 we have:

ABC(G) = ABC(G′) +

√

d

2d
+

√
2

2
−
√

d

2d

<
3r
√
2

2
+ (n− 2r − 2)

√

n− 3

n− 2
+

1√
2

< h(n, ⌊n− 1

2
⌋).

Subcase 2.2: u1u2 ∈ E(G). Suppose G′ = G−u0−u1. Then G′ ∈ G(n−2, r−
1), r = ⌊n−1

2 ⌋ and by induction hypothesis, ABC(G′) < h(n − 2, ⌊n−1
2 ⌋ − 1).

If NG(u2) \ {u0, u1} = {y1, . . . , yd−2}, then by Lemma 1.1,

ABC(G) = ABC(G′) + 2f(2, d) + f(2, 2) +

d−2
∑

i=1

[f(d, d(yi))− f(d− 2, d(yi))]

≤ ABC(G′) + 3f(2, 2)

<
3
√
2

2
(r − 1) + (n− 2r − 1)

√

n− 4

n− 3
+ 3

√

2

4
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< h(n, ⌊n− 1

2
⌋).

Hence the proof is completed. �

Theorem 2.2. Among all graphs in G(n, r), 0 ≤ r < ⌊n−1
2 ⌋, the graph

G0(n, ⌊n−1
2 ⌋ − 1) has the maximum ABC index, and,

ABC
(

G0(n, ⌊n− 1

2
⌋ − 1)

)

= 3(⌊n− 1

2
⌋ − 1)

√
2

2
+ (n− 2⌊n− 1

2
⌋+ 1)

√

n− 2

n− 1

= h(n, ⌊n− 1

2
⌋ − 1).

Proof. Suppose G ∈ G(n, r). It is enough to prove that ABC(G) < h(n, ⌊n−1
2 ⌋

−1). We proceed by induction on r and n. If r = 0, 1, 2, then by Lemmas 1.3,
1.4 and 1.5 the result holds. It can be assumed that r ≥ 3 and so n ≥ 9. If
n = 9, then r = 3 and the only graph with this condition is G0(9, 3). Assume
that G ∈ G(n, r), where n ≥ 10 and r ≥ 3. The following two cases are
occurred:

Case 1: δ(G) = 1. Consider a vertex u adjacent to the vertex v of degree d,
and assume that NG(v) \ {u} = {y1, . . . , yd−1}, 2 ≤ d ≤ n− 1. If G′ = G − u,
then G′ ∈ G(n− 1, r). So according to induction hypothesis

ABC(G′) < h(n− 1, ⌊n− 1

2
⌋ − 1) .

Therefore, by Lemma 1.1 we have:

ABC(G) = ABC(G′) + f(1, d) +

d−1
∑

i=1

[f(d, d(yi))− f(d− 1, d(yi))]

≤ ABC(G′) +

√

d− 1

d

<
3
√
2

2
(r − 1) + (n− 2r)

√

n− 3

n− 2
+

√

d− 1

d

< h(n, ⌊n− 1

2
⌋ − 1).

Case 2: δ(G) ≥ 2. By definition of cactus graph and our assumption, there
is an edge u0u1 ∈ E(G) such that d(u0) = d(u1) = 2, NG(u0) = {u1, u2} and
d(u2) ≥ 3. Since n ≥ 10 and r ≥ 3, we have again two different subcases as
follows:

Subcase 2.1: u1u2 6∈ E(G). Suppose G′ = G−u0+u1u2. So, G
′ ∈ G(n−1, r)

and by induction ABC(G′) < h(n−1, ⌊n−1
2 ⌋−1). On the other hand, by Lemma

1.1 we have:

ABC(G) = ABC(G′) +

√

d

2d
+

√
2

2
−
√

d

2d
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<
3(r − 1)

√
2

2
+ (n− 2r)

√

n− 3

n− 2
+

1√
2

< h(n, ⌊n− 1

2
⌋ − 1).

Subcase 2: u1u2 ∈ E(G). Suppose G′ = G−u0−u1. Then G′ ∈ G(n−2, r−
1) and by induction, ABC(G′) < h(n − 2, ⌊n−1

2 ⌋ − 2). If NG(u2) \ {u0, u1} =
{y1, . . . , yd−2}, then by Lemma 1.1, we get,

ABC(G) = ABC(G′) + 2f(2, d) + f(2, 2) +

d−2
∑

i=1

[f(d, d(yi))− f(d− 2, d(yi))]

≤ ABC(G′) + 3f(2, 2)

<
3
√
2

2
(r − 2) + (n− 2r + 1)

√

n− 4

n− 3
+ 3

√

2

4

< h(n, ⌊n− 1

2
⌋ − 1).

This completes the proof. �

Suppose G1(n, r), n ≥ 7, denotes the set of all cactus graphs obtained from
r cycles of length 3 and n−2r−1 pendant edges having a common vertex with
r − 1 cycles, where 2 ≤ r ≤ ⌊n−1

2 ⌋, see Figure 2. So,

ABC(G1(n, r)) = (3r − 1)

√
2

2
+ (n− 2r − 1)

√

n− 4

n− 3
+

√

n− 1

4(n− 3)
.

The last expression is denoted by p(n, r).

(a) G1(11, 5) (b) G1(12, 5)

Figure 2. Some cactus graphs of type G1(n, r).

Theorem 2.3. Among all n vertex cactus graphs, n≥7, the graph G1(n,⌊n−1
2 ⌋)

has the second maximum of ABC index.

Proof. By Theorem 2.1, the graph G0(n, ⌊n−1
2 ⌋) has the maximum ABC index.

Let A be the set of all cactus graphs with r = ⌊n−1
2 ⌋ cycles except from
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G0(n, ⌊n−1
2 ⌋). By definition of cactus graphs, members of A has one of the

following forms:

1) The members of A have odd order and their blocks have length three.
2) The members ofA have even order and one of the following are satisfied:

i) All except one block are cycles of length three and the remaining
block is a pendant edge,

ii) All except one block are cycles of length three and the remaining
block is a cycle of length four,

iii) All except one block are cycles of length three and the remaining
block is an edge connecting two other blocks.

Note that if the order of an element X of A is odd, then |E(X)| = 3r. If its
order is even, then |E(X)| = 3r + 1. Let B be the set of all Y , Y ∈ A, such
that Y has the maximum number of edges with an end vertex of degree two.
Then,

1. If |Y | is odd, then the maximum number of edges that each of them
has an end vertex of degree two is 3r− 1. This happens if the graph Y
has r − 1 cycles with a common vertex a and another cycle which has
a common vertex with one of these r − 1 cycles in a vertex b different
from a, i.e., G1(n, ⌊n−1

2 ⌋), Figure 3(a).
2. The order of Y is even and one of the following are happened:

(a) Y has an pendant and all other blocks are having length three. In
this case, Y has at most 3r − 1 edges with this property that one
of its vertices has degree two, Figure 3(b).

(b) Y has a unique block of order two that connects other blocks
which are triangles. In this case, Y has at most 3r edges with this
property that one of its vertices has degree two, Figure 3(c).

(c) All blocks of Y are cycles of lengths three or four. There is one
block of order four and so Y has at most 3r + 1 edges with this
property that one of its vertices has degree two, Figure 3(d).

Put C = A − B. Clearly, all element of C has k(≥ 2) non-pendant edges
such that their endpoints have degree ≥ 3. So, m− k edges are having at least
one end vertex of degree two. Obviously m − k < 3r − 1. We shall show that
ABC index of G1(n, ⌊n−1

2 ⌋) is an upper bound for both sets B and C. Since

G1(n, ⌊n−1
2 ⌋) ∈ B, B 6= ∅. Suppose G ∈ B. If G = G1(n, ⌊n−1

2 ⌋), then the

statement holds. Assume that G ∈ B, G 6= G1(n, r) and its order is odd. Then,
G has 3r − 1 edges in which at least one of end vertices has degree two and
only one edge of degree (n− u, u+ 1), where u > 6 and even. Therefore,

ABC(G) = (3r − 1)

√
2

2
+

√

n− 1

(n− u+ 1)(u)

≤ (3r − 1)

√
2

2
+

√

n− 1

6(n− 5)
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(a) The order of cactus is
odd. It has 3r− 1 edges with
at least one end vertex of de-
gree 2.

(b) 3r − 1 (c) 3r (d) 3r + 1

Figure 3. Some elements in B. Graphs with 3r− 1 (left), 3r
(middle) and 3r + 1 (right) edges such that at least one end

vertex has degree 2. The ABC index of all edges are
√
2
2 .

< (3r − 1)

√
2

2
+

√

n− 1

4(n− 3)
= ABC(G1(n, ⌊n− 1

2
⌋)) .

Since u > 6 and n− 5 > n− u+ 1, 4(n− 3) < 6(n− 5) ≤ (n− u+ 1)u. Thus,

√

n− 1

4(n− 3)
−
√

n− 1

(n− u+)u)
> 0 .

Let G ∈ B has even order and there are 3r − 1 edges that at least one
of their end vertices have degree two. Then there exists only one edge of
degree (u, n − u + 1), u ≥ 6 and n ≥ 12, and one pendant edge. Without
loss of generality, we assume that the pendant edge is linked to the vertex of
maximum degree (u ≥ n− u+ 1). Therefore,

ABC(G) = (3r − 1)

√
2

2
+

√

n− 1

(n− u+ 1)u
+

√

u− 1

u
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≤ (3r − 1)

√
2

2
+

√

n− 1

6(n− 5)
+

√

n− 4

n− 3

< (3r − 1)

√
2

2
+

√

n− 1

4(n− 3)
+

√

n− 4

n− 3

= ABC(G1(n, ⌊n− 1

2
⌋)) .

Again since u ≥ 6 and n−3 > n−5 ≥ n−u+1, 4(n−3) < 6(n−5) ≤ u(n−u+1).
So,

√

n− 1

4(n− 3)
−
√

n− 1

u(n− u+ 1)
> 0.

If the graph G has exactly 3r + 1 edges in which at least one of its end
vertices has degree two, then

ABC(G) = (3r + 1)

√
2

2
< (3r − 1)

√
2

2
+

√

n− 1

4(n− 3)
+

√

n− 4

n− 3

= ABC(G1(n, ⌊n− 1

2
⌋)) .

Define g(n) =
√

n−1
4(n−3 +

√

n−4
n−3 −

√
2. Then for n > 7,

g′(n) =

√
n− 3

2(n− 3)2

( −1√
n− 1

+
1√
n− 4

)

> 0.

Hence, g(10) > g(8) > 0.
If the graph G has exactly 3r edges in which at least one of its end vertices

has degree two and an edge of degree (n − v, v), where v ≥ 3 is odd then we
have:

ABC(G) = (3r)

√
2

2
+

√

n− 2

v(n− v)
≤ (3r)

√
2

2
+

√

n− 2

3(n− 3)

< (3r − 1)

√
2

2
+

√

n− 1

4(n− 3)
+

√

n− 4

n− 3

= ABC(G1(n, ⌊n− 1

2
⌋)).

Define f(n) =
√

n−1
4(n−3) +

√

n−4
n−3 −

√

n−2
3(n−3) −

√
2
2 . Then for each even n,

n > 7,

f ′(n) =

√
n− 3

2(n− 3)2

(

(
−1√
n− 1

+
1√
n− 4

) +
1

√

3(n− 2)

)

> 0.

So, f(10) > f(8) > 0 and the statement holds.
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Suppose that G ∈ C has odd order n, n ≥ 8, degree of one of its k non-
pendant edges is greater than three, say d(x) > 3, and ∆ ≥ 4. Notice that
there is no graph in C with order seven. Then,

ABC(G) ≤ (3r − k)

√
2

2
+ (n− 2r − 1)

√

∆− 1

∆

+ (k − 1)

√

6

16
+

√

∆+ 2

4∆

≤ (3r − k)

√
2

2
+ (n− 2r − 1)

√

n− 4

n− 3

+ (k − 1)

√

2

4
+

√

n− 1

4(n− 3)

= p(n, r).

Define J(n) =
√

n−1
4(n−3) + (k − 1)

√

2
4 − k

√
6
4 . Then J(n) is increasing, when

n ≥ 8. Therefore, for a fixed k, J(8) > 0. Thus, for k ≥ 2, we have:

(k − 1)

√

2

4
+

√

n− 1

4(n− 3)
> k

√

6

16
≥ (k − 1)

√

6

16
+

√

∆+ 2

4∆
.

If G ∈ C has even order and one of the end vertices of at least one non-
pendant edge has degree three (such an edge is a block), then we can see that
n = |G| ≥ 8. This implies that

ABC(G) ≤ (3r − k)

√
2

2
+

2

3
+ k

√
6

4

≤ (3r − 1)

√
2

2
+

√

n− 1

4(n− 3)
+

√

n− 4

n− 3

= p(n, r).

To do this, we define:

L(n) =

√

n− 1

4(n− 3)
+

√

n− 4

n− 3
+ (k − 1)

√
2

2
− 2

3
− k

√
6

4
.

Then it is clear that L′(n) > 0, n ≥ 8. So, for a fixed k, L(8) > 0 which
completes the proof. �

Theorem 2.4. Among all graphs in G(n, r), the cactus graph G0(n, ⌊n−1
2 ⌋−1)

has second maximum ABC index, n ≥ 20. If 7 ≤ n ≤ 19, then the cactus graph

G1(n, ⌊n−1
2 ⌋) has second maximum ABC index. Moreover, the ABC values are

as follows:

ABC
(

G1(n, ⌊n− 1

2
⌋)
)

= p(n, ⌊n− 1

2
⌋),
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ABC
(

G0(n, ⌊n− 1

2
⌋ − 1)

)

= h(n, ⌊n− 1

2
⌋ − 1).

Proof. By definition,

p(n, r) =















(3n−8)
√
2

4 +
√

n−4
n−3 +

√

n−1
4(n−3) , n = 2i

(3n−5)
√
2

4 +
√

n−1
4(n−3) , n = 2i− 1, i = 4, 5, . . . ,

h(n, r − 1) =















(3n−12)
√
2

4 + 3
√

n−2
n−1 , n = 2i

(3n−9)
√
2

4 + 2
√

n−2
n−1 , n = 2i− 1, i = 4, 5, . . . ,

where r = ⌊n−1
2 ⌋. Define H(n) = p(n, r)− h(n, r − 1) then

H(n) =















√
2 +

√

n−4
n−3 +

√

n−1
4(n−3) − 3

√

n−2
n−1 , n = 2i

√
2 +

√

n−1
4(n−3) − 2

√

n−2
n−1 , n = 2i− 1.

Obviously, we can see that H ′(n) < 0, n ≥ 7. On the other hand, for 7 ≤ n ≤
19, H(n) > 0 and for n ≥ 20, H(n) < 0. This completes the proof. �
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