• Title/Summary/Keyword: Bombardment

Search Result 406, Processing Time 0.029 seconds

Etching Mechanism Of Bi4-xEuxTiO12 (BET) Thin films Using Ar/CF4 Inductively Coupled Plasma (Ar/CF4 유도결합 플라즈마를 이용한 BET 박막의 식각 메카니즘)

  • 임규태;김경태;김동표;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.298-303
    • /
    • 2003
  • Bi$_4$-$_{x}$EU$_{x}$Ti$_3$O$_{12}$ (BET) thin films were etched by inductively coupled CF$_4$/Ar plasma. We obtained the maximum etch rate of 78 nm/min at the gas mixing ratio of CF$_4$(10%)/Ar(90%). The variation of volume density for F and Ar atoms are measured by the optical emission spectroscopy. As CF$_4$increased in CF$_4$/Ar plasma, the emission intensities of F increase, but Ar atoms decrease, which confirms our suggestion that emission intensity is proportional to the volume density of atoms. From X-ray photoelectron spectroscopy, the intensities of the Bi-O, the Eu-O and the Ti-O peaks are changed. By pure Ar plasma, intensity peak of the oxygen-metal (O-M : TiO$_2$, Bi$_2$O$_3$, Eu$_2$O$_3$) bond was seemed to disappear while the intensity of pure oxygen peak showed an opposite tendency. After the BET thin films was etched by CF$_4$/Ar plasma, the peak intensity of O-M bond increase slowly, but more quickly than that of peak belonged to pure oxygen atoms due to the decrease of Ar ion bombardment. Scanning electron microscopy was used to investigate etching Profile. The Profile of etched BET thin film was over 85$^{\circ}$./TEX>.

The relationships between the MgO crystal orientation and the conditions of deposition on AC-PDP (AC PDP의 MgO 결정방향성과 증착조건간의 상관관계에 관한 연구)

  • Jang, Jin-Ho;Jang, Yong-Min;Lee, Ji-Hoon;Cho, Sung-Yong;Kim, Dong-Hyun;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.202-203
    • /
    • 2006
  • In the AC PDP, the MgO film is used as electrode protective film. This film must provide excellent ion bombardment protection, high secondary electron emission, and should be high transparent to visible radiation. In this study, we investigated the relations between the crystal orientation and e-beam evaporation process parameters. The crystal orientation of the MgO layer depends on the conditions of deposition. The parameters are the thickness of the MgO film $1000{\AA}-6500{\AA}$, the deposition rate $200{\AA}/min{\sim}440{\AA}/min$, the temperature $150^{\circ}C{\sim}250^{\circ}C$, and the distance between crucible and substrate 11cm ${\sim}$ 14cm. The temperature of substrate and evaporation rate of source material, or deposition rate of the film, are definitely related to the crystal orientation of the MgO thin film. The crystal orientation can be changed by the distance between the target(MgO tablet) and the substrate. However, the crystal orientation is not much affected by the thickness of MgO thin film.

  • PDF

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.

Generation of neutral stream from helicon plasma and its application to Si dry etching (헬리콘 플라즈마로부터 중성입자 흐름의 생성 및 이를 이용한 실리콘의 건식식각)

  • 정석재;양호식;조성민
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.390-396
    • /
    • 1998
  • Neutral stream was generated from Helicon plasma source and was applied to etch silicon for the purpose of preventing physical and electrical damages from the bombardment of charged particles with high translation energy. By installing a permanent magnet and applying positive bias beneath the substrate, the cusp-magnetic and electric fiddles were generated in order to remove the charged particles from the downstream plasma. As a result, the electron density and ion density in the vicinity of the substrate were reduced by 1/1000 and 1/10, respectively. The directional etching of silicon was observed and the etch rate was found to be very low to below 100 $\AA$/min at a pressure of $8.5{\times}10^{-4}$ Torr, when $Cl_2$ and 10% $SF_{sigma}$ etchant gases were used.

  • PDF

Surface Reactions on the Bi4-xLaxTiO3O12 Thin Films Etched in Inductively Coupled CF4/Ar Plasma (유도결합 CF4/Ar 플라즈마에 의한 Bi4-xLaxTiO3O12 박막의 식각 표면 반응)

  • 김동표;김경태;김창일
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.378-384
    • /
    • 2003
  • Etching species in CF$_4$/Ar plasma and the behavior of etching rate of Bi$_4$-$_{x}$L$_{x}$rTi$_3$O$_2$ (BLT) films were investigated in inductively coupled plasma (ICP) reactor in terms of etch parameters. The etching rate as functions of CF$_4$ contents showed the maximum 803 $\AA$/min at 20% CF$_4$ addition in CF$_4$/Ar plasma. The increase of RF power and DC bias voltage caused to an increase of etch rate. The variation of relative volume densities for F and he atoms were measured with the optical emission spectroscopy (OES). The chemical states of BLT were investigated with using X-ray photoelectron spectroscopy (XPS). XPS narrow scan analysis shows that La-fluorides remained on the etched surface. The presence of maximum etch rate at CF$_4$(20%)/Ar(80%) may be explained by the concurrence of two etching mechanisms such as physical sputtering and chemical reaction. The roles of he ion bombardment include destruction of metal (Bi, La, Ti)-O bonds as well as assistant for chemical reaction of metals with fluorine atoms.oms.

Dry Etching of ITO Thin Films by the Addition of Gases in Cl2/BCl3 Inductivity Coupled Plasma

  • Joo, Young-Hee;Woo, Jong-Chang;Choi, Kyung-Rok;Kim, Han-Soo;Wi, Jae-Hyung;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.3
    • /
    • pp.157-161
    • /
    • 2012
  • In this study, we investigated the etching characteristics of ITO thin films and the effects of inert gases added to $Cl_2/BCl_3$ inductivity coupled plasma. The maximum etch rate of ITO thin film was 130.0 nm/min upon the addition of Ar (6 sccm) to the $Cl_2/BCl_3$ (4:16 sccm) plasma, which was higher than that with He or $N_2$ added to the plasma. The ion bombardment by $Ar^+$ sputtering was due to the relatively low volatility of the by-products formed in the $Cl_2/BCl_3$ (4:16 sccm) plasma. The surface of the etched ITO thin film was characterized by x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). From the XPS results, it is concluded that the proper addition of Ar and He to the $Cl_2/BCl_3$ plasma removes carbon and by-products from the surface of the etched ITO thin film.

A Study on the Formation of Detection Electrode for the IED Removal Robot by Using A Photosensitive CNT Paste (감광성 CNT 페이스트를 이용한 IED 폭발물 제거로봇 탐지전극 형성에 관한 연구)

  • Kwon, Hye Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.4
    • /
    • pp.231-237
    • /
    • 2018
  • In this study, two important requirements for the home production of a robot to detect and remove improvised explosive devices (IEDs) are presented in terms of the total cost for robot system development and the performance improvement of the mine detection technology. Firstly, cost analyses were performed in order to provide a reasonable solution following an engineering estimate method. As a result, the total cost for a mass production system without the mine detection system was estimated to be approximately 396 million won. For the case including the mine detection system, the total cost was estimated to be approximately 411 million won, in which labor costs and overhead charges were slightly increased and the material costs for the mine detection system were negligible. Secondly, a method for fabricating the carbon nanotube (CNT) based gas detection sensor was studied. The detection electrodes were formed by a photolithography process using a photosensitive CNT paste. As a result, this method was shown to be a scalable and expandable technology for producing excellent mine detection sensors. In particular, it was found that surface treatments by using adhesive taping or ion beam bombardment methods are effective for exposing the CNTs to the ambient air environment. Fowler-Nordheim (F-N) plots were obtained from the electron-emission characteristics of the surface treated CNT paste. The F-N plot suggests that sufficient electrons are available for transport between CNT surfaces and chemical molecules, which will make an effective chemiresistive sensor for the advanced IED detection system.

A Study on the Direction of System Improvement for the Utilization of Residential Spaces of the Emergency Evacuation Facilities in Responding to War (비상대피시설의 거주 공간 활용을 위한 제도 개선 방향 설정에 관한 연구)

  • Kim, Yujin;Hwang, Eunkyoung;Ham, Eungu
    • Journal of the Society of Disaster Information
    • /
    • v.9 no.1
    • /
    • pp.78-86
    • /
    • 2013
  • Caused by the Cheonanham attack and the Yeonpyeongdo bombardment occurred a few years ago, and the recent North Korea's nuclear test, the war crisis between South and North Korea has been increasing. Accordingly, an interest in obtaining a temporary residential space, for the case of the outbreak of war, where people can reside safely over a period of time has been escalating. However, in the disaster relief planning guidelines of the National Emergency Management Agency, the standards on the temporary residential spaces in preparation for storm and flood or earthquake are included, but the standards on the ones in responding to war are not yet equipped. In particular, the standards on the underground temporary residential spaces that can accommodate massive victims should be developed in preparation. In this study, through a requirements analysis based on the survey of war victims and a comparative analysis between disaster-related laws and regulations, the direction of relevant system improvement for the utilization of temporary residential spaces in responding to war is established.

Deposition of IBAD-MgO for superconducting coated conductor (초전도 박막선재용 IBAD-MgO 박막 증착)

  • Ha, Hong-Soo;Kim, Hyo-Kyum;Yang, Ju-Saeng;Ko, Rock-Kil;Kim, Ho-Sup;Oh, Sang-Soo;Song, Kyu-Jeong;Park, Chan;Yoo, Sang-Im;Joo, Jin-Ho;Moon, Seong-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.282-283
    • /
    • 2005
  • Ion beam assisted deposition(IBAD) technique was used to produce biaxially textured polycrystalline MgO thin films for high critical current YBCO coated conductor. Hastelloy tapes were continuous electropolished with very smooth surface for IBAD-MgO deposition, RMS roughness of Hastelloy tape values below 2 nm and local slope of less than $1^{\circ}$. After the polishing of the tape an amorphous $Y_2O_3$ and $Al_2O_3$ are deposited Biaxially textured MgO was deposited on amorphous layer bye-beam evaporation with a simultaneous bombardment of high energy ions. We had developed the RHEED to measure in-situ biaxial texture of film surface as thin as tens angstrom. And also ex-situ characterization of buffer layers was studied using XRD and SEM. The full-width at half maximum(FWHM) out of plane texture of IBAD-MgO template is $4^{\circ}$.

  • PDF

keV and MeV Ion Beam Modification of Polyimide Films

  • Lee, Yeonhee;Seunghee Han;Song, Jong-Han;Hyuneui Lim;Moojin Suh
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.170-170
    • /
    • 2000
  • Synthetic polymers such as polyimide, polycarbonate, and poly(methyl methacrylate) are long chain molecules which consist of carbon, hydrogen, and heteroatom linked together chemically. Recently, polymer surface can be modified by using a high energy ion beam process. High energy ions are introduced into polymer structure with high velocity and provide a high degree of chemical bonding between molecular chains. In high energy beam process the modified polymers have the highly crosslinked three-dimensionally connected rigid network structure and they showed significant improvements in electrical conductivity, in hardness and in resistance to wear and chemicals. Polyimide films (Kapton, types HN) with thickness of 50~100${\mu}{\textrm}{m}$ were used for investigations. They were treated with two different surface modification techniques: Plasma Source Ion Implantation (PSII) and conventional Ion Implantation. Polyimide films were implanted with different ion species such as Ar+, N+, C+, He+, and O+ with dose from 1 x 1015 to 1 x 1017 ions/cm2. Ion energy was varied from 10keV to 60keV for PSII experiment. Polyimide samples were also implanted with 1 MeV hydrogen, oxygen, nitrogen ions with a dose of 1x1015ions/cm2. This work provides the possibility for inducing conductivity in polyimide films by ion beam bombardment in the keloelectronvolt to megaelectronvolt energy range. The electrical properties of implanted polyimide were determined by four-point probe measurement. Depending on ion energy, doses, and ion type, the surface resistivity of the film is reduced by several orders of magnitude. Ion bombarded layers were characterized by Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS), XPS, and SEM.

  • PDF