• 제목/요약/키워드: Body Pressure Sensor

검색결과 119건 처리시간 0.021초

Quantitative Monitoring of Body Pressure Distribution Using Built-in Optical Sensors

  • Lee, Kang-Ho;Kwon, Yeong-Eun;Seo, Jihyeon;Lee, Byunghun;Lee, Dongkyu;Kwon, Ohwon
    • 센서학회지
    • /
    • 제29권5호
    • /
    • pp.279-282
    • /
    • 2020
  • In this study, body pressure was quantitatively detected using built-in optical sensors, inside an air cushion seat. The proposed system visualizes the effect of the body pressure distribution on the air cushion seat. The built-in sensor is based on the time-of-flight (ToF) optical method, instead of the conventional electrical sensor. A ToF optical sensors is attached to the bottom surface of the air-filled cells in the air cushion. Therefore, ToF sensors are durable, as they do not come in physical contact with the body even after repeated use. A ToF sensor indirectly expresses the body pressure by measuring the change in the height of the air-filled cell, after being subjected to the weight of the body. An array of such sensors can measure the body pressure distribution when the user sits on the air cushion seat. We implemented a prototype of the air cushion seat equipped with 7 ToF optical sensors and investigated its characteristics. In this experiment, the ToF optical pressure sensor successfully identified the pressure distribution corresponding to a sitting position. The data were accessed through a mobile device.

세라믹소재를 이용한 해수압센서 제작 및 전기적 특성 연구 (A Study on the Fabrication and Electrical Characteristics of Hydraulic Pressure Sensors by Using Ceramics Materials)

  • 박성현;김은섭;정정균
    • 한국전기전자재료학회논문지
    • /
    • 제28권6호
    • /
    • pp.384-389
    • /
    • 2015
  • In this paper, we fabricated ceramic body and sapphire wafer in order to develop a hydraulic pressure sensor with high sensitivity and high temperature stability. The sapphire wafer was adopted with a membrane of capacitance ceramic pressure sensor. The capacitance value of the sensor for the finite element analysis(FEM) showed a linear pressure characteristics. Membrane was processed with a diameter of 32.4 mm and a thickness of 1 mm by using alumina powders. Ceramic body was processed with a diameter 32.4 mm and a thickness 5 mm. The capacitance pressure sensor was made with high heat treatment of the ceramic body and the sapphire wafer. Initially capacitance of the pressure sensor was 50 pF and a capacitance of 110 pF was measured from 5 bar pressure. Output voltage of 5 V was appeared at 5 bar pressure.

The Medical Bed System for Preventing Pressure Ulcer Using the Two-Stage Control

  • Kim, Jungae;Lee, Youngdae;Seon, Minju;Lim, Jae-Young
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.151-158
    • /
    • 2021
  • The main cause of ulcer is pressure, which starts to develop when the critical body pressure (32mmHg) is exceeded, and when the critical time elapses, ulcer occurs. In this study, the keyboard mechanism of the medical bed with 4 bar links was adopted, and each key can be controlled vertically. A key has one servo drive and one sensor controller which hasseveral body pressure sensors. The sensor controllers and the servo drives are connected to the main controller by two CAN (Car Are Network) in series, respectively. By reading the maximum body pressure value of each keyboard sensor, and by calculating the error value based on the critical body pressure, the fuzzy controller moves each key so that the total error becomes zero. If the fuzzy controller fails, then it prevents ulcer by lifting and lowering the keys of the bed alternatively within a short time. Thus, the controller operates in two-stage. The validity and effectiveness of the proposed approach have been verified through experiments.

운전자의 체압 분포 및 시트변형에 대한 정량화 측정시스템 (Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes)

  • 권영은;김윤영;이용구;이동규;권오원;강신원;이강호
    • 센서학회지
    • /
    • 제27권6호
    • /
    • pp.397-402
    • /
    • 2018
  • Proper seat design is critical to the safety, comfort, and ergonomics of automotive driver's seats. To ensure effective seat design, quantitative methods should be used to evaluate the characteristics of automotive seats. This paper presents a system that is capable of simultaneously monitoring body pressure distribution and surface deformation in a textile material. In this study, a textile-based capacitive sensor was used to detect the body pressure distribution in an automotive seat. In addition, a strain gauge sensor was used to detect the degree of curvature deformation due to high-pressure points. The textile-based capacitive sensor was fabricated from the conductive fabric and a polyurethane insulator with a high signal-to-noise ratio. The strain gauge sensor was attached on the guiding film to maximize the effect of its deformation due to bending. Ten pressure sensors were placed symmetrically in the hip area and six strain gauge sensors were distributed on both sides of the seat cushion. A readout circuit monitored the absolute and relative values from the sensors in realtime, and the results were displayed as a color map. Moreover, we verified the proposed system for quantifying the body pressure and fabric deformation by studying 18 participants who performed three predefined postures. The proposed system showed desirable results and is expected to improve seat safety and comfort when applied to the design of various seat types. Moreover, the proposed system will provide analytical criteria in the design and durability testing of automotive seats.

체압센서를 장착한 욕창예방 의료용 침대의 제어기법 (Control Technique of a Medical Bed for Ulcer Prevention Equipped with Body Pressure Sensors)

  • 선민주;최지영;이영대
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권2호
    • /
    • pp.89-95
    • /
    • 2021
  • 욕창은 아직 해결되지 않은 인류의 난제이다. 본 연구에서는 건반형 의료용 침대를 개발하고 체압센서를 장착하여 욕창이 임계압력에 이르지 않도록 건반을 제어하는 방법을 제시한다. 이를 위해 4bar 링크를 이용한 건반형 매트리스를 개발하고 건반의 높낮이를 체압센서를 통해 임계압력 이내로 제어하는 방법을 사용한다. 압력x시간이 중요 요인인 욕창에서 건반을 승하강하며 시간제어만을 할 때는 신체의 불편감이 있으나, 제시한 방법을 사용하면 압력을 임계압력이내로 제어함으로서 편안한 상태에서 욕창을 예방하는 효과를 거둔다. 개발한 의료용 침대 시스템의 유효성과 타당성을 이론과 실험을 통해 검증하였다.

아두이노 활용 의복압 측정기 제작 및 신뢰도 검증 (Reliability Verification of the Clothing Pressure Meter Utilizing the Arduino Board)

  • 김남임;박진아
    • 한국의류학회지
    • /
    • 제46권5호
    • /
    • pp.723-740
    • /
    • 2022
  • This study aimed to develop an Arduino-based garment pressure device (APD) on the basis of using Single-Tact sensor by suggesting the reliable clothing pressure range and coefficient of selected sensors through the APD calibration process. Once the APD was validated, the pressure of the experimental men's lower body compression wears was measured using the APD and was compared to the pressure measured using the existing air-pack type pressure meter. The subjects were one mannequin and eight men in their 20's, and the trial compression wears were calf sleeves and pants. Clothing pressures were measured in hip, mid-thigh, calf, and ankle. In terms of the 99% confidence level, the experimental clothing pressure measured at the designated measuring points using the APD was considered identical to the one measured using an existing clothing pressure meter. Therefore, on the basis of the experiment results, this study demonstrated that the APD is as reliable as the existing clothing pressure meter within the pressure ranges of 0.54-16.79 kPa and 0.18-25.47 kPa as provided by the SingleTact sensor supplier's data on the basis of using an external ADC (Analog to Digital Converter) module.

3D 프린팅을 활용한 탄소 나노 튜브 전왜성 복합소재 기반 압력 센서 개발 연구 (A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing)

  • 김성용;강인필
    • 대한기계학회논문집A
    • /
    • 제41권3호
    • /
    • pp.187-192
    • /
    • 2017
  • 본 논문에서는 탄소나노튜브 전왜성 복합소재(Nano-Carbon Piezoresistive Composite, NCPC)를 기반으로 하며, 3D 프린팅 공정을 활용하여 제작된 압력센서의 개발 진행 연구를 소개하였다. 압력센서의 성능을 향상시키기 위하여 센서전극을 외팔보 형태로 설계하였고 3D 프린팅 공정을 활용하여 소형전극을 제작하였다. 압력을 전기적 저항의 변화로 바꾸는 전왜성 센서의 전극은 2wt%의 다중벽 탄소나노튜브/에폭시 전왜성 복합소재로 제작하였다. 센서는 압력시스템에 용이하게 적용하기 위하여 파이프 플러그 캡에 삽입하여 제작을 하였으며, 실험실 환경에서 압력교정기를 활용하여 실험을 하였다. 외팔보 전극의 압력센서는 16,500kPa까지 선형적인 출력전압 특성을 보였으며, 이는 벌크형 전극의 압력센서 대비 약 200% 압력측정 성능 향상을 보였다.

인체의 복곡면과 직물 변형 특성을 이용한 의복압 예측법의 개선 (Prediction of the Clothing Pressure Using the Radii of Double Curvature and Transformation of a Fabric)

  • 이예진;홍경희
    • 한국의류학회지
    • /
    • 제29권8호
    • /
    • pp.1168-1175
    • /
    • 2005
  • Clothing pressure has close relation with clothing comfort and depends on the pattern and properties of textile fabrics. Choosing a suitable clothing pressure is an essential factor for designing functional clothing such as the foundation for reshaping of a body contour or medical items for bum patient, and etc. However, it is hard to measure pressure values at the curved surface of a human body correctly. Recently, an air pack type pressure sensor, which has relatively excellent performance has been used to measure clothing pressure, however, it is still inconvenient to apply because it is a contact- type sensor. Therefore, in this paper, we suggest an indirect method that can measure clothing pressure without touching the subject by improving the equation of Kirk and Ibrahim (1966). However, confusions have been occurred when someone use the equation since the definition of parameters are somewhat vague. Furthermore, the estimated clothing pressure obtained by the previous method are quite different from the real values because this method does not consider the 3D effect of a human body and property changes of a transformed fabric. In this paper, the direction of principal stress and the radius of curvature in the principal direction were searched in the 3D image of the deformed girdle to get more accurate clothing pressure. The estimated clothing pressure was verified by comparing the result of the air pack type pressure sensor. It was found that the accuracy of the pressure estimation was improved by considering the 3D curvature of human body and the directional characteristics of textile fabrics.

욕창 방지를 위한 체압 모니터링 시스템 개발 (Development of The Physical Pressure Monitoring System to Prevent Pressure Ulcers)

  • 이아라;장경배
    • 대한임베디드공학회논문지
    • /
    • 제6권4호
    • /
    • pp.209-214
    • /
    • 2011
  • This study suggests a Healthcare System for elderly and disabled who have mobility impairment and use a wheelchair for long time. Seating long time in a wheelchair without reducing pressure causes high risk of developing pressure sores. Pressure sores come with great deal of pain and often lead to develop complication. Not only it takes time and effort to treat pressure sores but also increases medical expenses. Therefore, we will develop a device to help to prevent pressure sores by measuring pressure distribution while seating in a wheelchair and wirelessly send information to user device to check pressure distribution in real time. The equipment to measure body pressure is composed of FSR sitting mat which is a sensor measuring part and an user terminal which is a monitoring part. The designed mat is matrix formed FSR sensor to measure pressure. The sensor send measured data to the controller which is connected to the end of the mat, and then the collected data are sent to an user terminal through a bluetooth. Developing a pressure monitoring system will help to prevent those who have mobility impairment to manage pressure sores and furthermore relieve their burden of medical expenses.

압력센서 가압방식의 평균혈압 측정에 관한 연구 (Measurement of Noninvasive Mean Arterial Pressure using Tonometry Pressure Sensor)

  • 박미경;허영;강희정;김경철
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.859-860
    • /
    • 2006
  • We developed a cuffless and noninvasive measurement technique of blood pressure using tonometric pressure sensor. With observation that the maximum value of pulse pressure is not obtained at mean arterial pressure(MAP), we have figured out MAP based on the physiological characteristic including the elasticity of wrist tisse. Detecting only one part of the body and using only one device are quite advantageous over other BP measurement techniques. Our technique makes new way for the cuffless BP measurement.

  • PDF