Browse > Article
http://dx.doi.org/10.5850/JKSCT.2022.46.5.723

Reliability Verification of the Clothing Pressure Meter Utilizing the Arduino Board  

Kim, Nam Yim (Research Institute of Human Ecology, Changwon National University)
Park, Gin Ah (Dept. of Clothing & Textiles, Changwon National University)
Publication Information
Journal of the Korean Society of Clothing and Textiles / v.46, no.5, 2022 , pp. 723-740 More about this Journal
Abstract
This study aimed to develop an Arduino-based garment pressure device (APD) on the basis of using Single-Tact sensor by suggesting the reliable clothing pressure range and coefficient of selected sensors through the APD calibration process. Once the APD was validated, the pressure of the experimental men's lower body compression wears was measured using the APD and was compared to the pressure measured using the existing air-pack type pressure meter. The subjects were one mannequin and eight men in their 20's, and the trial compression wears were calf sleeves and pants. Clothing pressures were measured in hip, mid-thigh, calf, and ankle. In terms of the 99% confidence level, the experimental clothing pressure measured at the designated measuring points using the APD was considered identical to the one measured using an existing clothing pressure meter. Therefore, on the basis of the experiment results, this study demonstrated that the APD is as reliable as the existing clothing pressure meter within the pressure ranges of 0.54-16.79 kPa and 0.18-25.47 kPa as provided by the SingleTact sensor supplier's data on the basis of using an external ADC (Analog to Digital Converter) module.
Keywords
Arduino platform; Lower body compression wear; Pressure sensor; Garment pressure meter; SingleTact sensor;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Song, K. H., Kim, J. H., & Park, S. H. (2002). Development and application of measurement system for clothing pressure. Korean Journal of Human Ecology, 11(3), 307-319.
2 Tang, K. P. M., Yick, K. L., Li, P. L., Yip, J., Or, K. H., & Chau, K. H. (2020). Effect of contacting surface on the performance of thin-film force and pressure sensors. Sensors, 20(23):6863. doi:10.3390/s20236863   DOI
3 Cho, S.-H. (2015). Comparison of medical compression garments by manufacturing country. Journal of the Korea Fashion & Costume Design Association, 17(4), 31-39.
4 Gogate, U., & Bakal, J. (2018). Healthcare monitoring system based on wireless sensor network for cardiac patients. Biomedical & Pharmacology Journal, 11(3), 1681-1688. doi: 10.13005/bpj/1537   DOI
5 Lee, H., Kim, K., & Lee, Y. (2020). Effect of compression pants on EEG spectrum. International Journal of Clothing Science and Technology, 32(2), 197-207. doi:10.1108/IJCST-0 3-2019-0031   DOI
6 Barhoumi, H., Marzougui, S., & Abdessalem, S. B. (2022). A novel design approach and ergonomic evaluation of Class I compression legging. International Journal of Clothing Science and Technology, 34(2), 273-284. doi:10.1108/IJCST11-2020-0179   DOI
7 French, D. N., Thompson, K. G., Garland, S. W., Barnes, C. A., Portas, M. D., Hood, P. E., & Wilkes, G. (2008). The effects of contrast bathing and compression therapy on muscular performance. Medicine and Science in Sports and Exercise, 40(7), 1297-1306. doi:10.1249/mss.0b013e31816b10d5   DOI
8 Gong, Y.-Q., & Mei, S.-Q. (2019). Stretch elasticity and garment pressure of shaping-underwear fabric. Proceedings of IOP Conference Series: Materials Science and Engineering, Russia, 684:012010. doi:10.1088/1757-899X/684/1/012010   DOI
9 Jang, E., & Cho, G. (2019). The classification and investigation of smart textile sensors for wearable vital signs monitoring. Fashion & Textile Research Journal, 21(6), 697-707. doi: 10.5805/SFTI.2019.21.6.697   DOI
10 Krishnamurthi, K., Thapa, S., Kothari, L., & Prakash, A. (2015). Arduino based weather monitoring system. International Journal of Engineering Research and General Science, 3(2), 452-458.
11 Mitsuno, T., & Yanagisawa, A. K. (2022). Comfortable pressure feeling and clothing pressure on abdomen. International Journal of Clothing Science and Technology, 34(1), 110-118. doi:10.1108/IJCST-12-2017-0194   DOI
12 Lin, Y., Choi, K.-F., Luximon, A., Yao, L., Hu, J. Y., & Li, Y. (2011). Finite element modeling of male leg and sportswear: contact pressure and clothing deformation. Textile Research Journal, 81(14), 1470-1476. doi:10.1177/0040517510395997   DOI
13 Liu, H., & Cheng, L. (2021). Study on the wearing performance of compression stockings and its influence on the blood flow velocity of lower limbs. Proceedings of E3S Web of Conferences, China, 237:04037. doi:10.1051/e3sconf/202123704037   DOI
14 Liu, R., Kwok, Y. L., Li, Y., Lao, T. T. H., Zhang, X., & Dai, X. Q. (2005). Objective evaluation of skin pressure distribution of graduated elastic compression stockings. Dermatologic Surgery, 31(6), 615-624. doi:10.1111/j.1524-4725.2005.31603   DOI
15 Mahmood, S. N., & Hasan, F. F. (2017). Design of weather monitoring system using Arduino based database implementation. Journal of Multidisciplinary Engineering Science and Technology (JMEST), 4(4), 7109-7117.
16 McLaren, J., Helmer, R. J. N., Horne, S. L., & Blanchonette, I. (2010). Preliminary development of a wearable device for dynamic pressure measurement in garments. Procedia Engineering, 2(2), 3041-3046. doi:10.1016/j.proeng.2010.04.108   DOI
17 Parmar, S., Khodasevych, I., & Troynikov, O. (2017). Evaluation of flexible force sensors for pressure monitoring in treatment of chronic venous disorders. Sensors, 17(8):1923. doi:10.3390/s17081923   DOI
18 Schoepp, K. R., Dawson, M. R., Schofield, J. S., Carey, J. P., & Hebert, J. S. (2018). Design and integration of an inexpensive wearable mechanotactile feedback system for myoelectric prostheses. IEEE Journal of Translational Engineering in Health and Medicine, 6:2100711. doi:10.1109/JTEHM.2018.2866105   DOI
19 SingleTact. (2016). Miniature force sensors [PDF document]. SingleTact. Retrieved from https://www.singletact.com/SingleTact_Datasheet.pdf
20 SingleTact. (2022). Calibrated sensors. SingleTact. Retrieved from https://www.singletact.com/micro-force-sensors/calibrated-sensors
21 Wang, Y., Liu, Y., Luo, S., Chen, C., & Jin, L. (2018). The pressure comfort sensation of female's body parts caused by compression garment. In T. Ahram & C. Falcao (Eds.), Advances in human factors in wearable technologies and game design: Proceedings of the AHFE 2017 International Conference on Advances in Human Factors and Wearable Technologies, July 17-21, 2017, The Westin Bonaventure Hotel, Los Angeles, California, USA (pp. 94-104). Cham: Springer.
22 Sugathan, A., Roy, G. G., Kirthyvijay, G. J., & Thomson, J. (2013). Application of arduino based platform for wearable health monitoring system. Proceedings of 2013 IEEE 1st International Conference on Condition Assessment Techniques in Electrical Systems (CATCON), India, 1-5. doi:10.1109/CATCON.2013.6737464   DOI
23 Tan, E. T., Halim, Z. A., & Kok, V. (2015). Early development of embedded fatigue monitoring system based on heart rate. ARPN Journal of Engineering and Applied Sciences, 10(22), 17197-17201.
24 Ungson, Y., Reyna, M. A., & Bravo-Zanoguera, M. E. (2014). Development of an ambulatory ECG system based on Arduino and mobile telephony for wireless transmission. Proceedings of 2014 Pan American Health Care Exchanges (PAHCE), Brazil, 1-5. doi:10.1109/PAHCE.2014.6849623   DOI
25 Mallick, B., & Patro, A. K. (2016). Heart rate monitoring system using finger tip through Arduino and processing software. International Journal of Science, Engineering and Technology Research (IJSETR), 5(1), 84-89.
26 Kim, N. Y., & Lee, H. (2019). Influence of clothing pressure on blood flow and subjective sensibility of commercial sports compression wear. Fashion & Textile Research Journal, 21(4), 459-467. doi:10.5805/SFTI.2019.21.4.459   DOI
27 Li, L. I., Au, W. M., Li, Y., Wan, K. M., Chung, W. Y., & Wong, K. S. (2009). A novel design method for an intelligent clothing based on garment design and knitting technology. Textile Research Journal, 79(18), 1670-1679. doi:10.1177/0040517508096219   DOI
28 Liu, R., Kwok, Y.-L., Li, Y., & Lao, T.-T. (2010). Fabric mechanical-surface properties of compression hosiery and their effects on skin pressure magnitudes when worn. FIBRES & TEXTILES in Eastern Europe, 18(2), 91-97.
29 Partsch, H. (2012). Compression therapy: clinical and experimental evidence. Annals of Vascular Diseases, 5(4), 416-422. doi:10.3400/avd.ra.12.00068   DOI
30 Shen, Y., Sui, J., & Xie, H. (2021). Effects of compression socks on muscle recovery after induced fatigue. AATCC Journal of Research, 8(2_suppl), 68-71. doi:10.14504/ajr.8.S2.14   DOI
31 Do, W.-H., & Kim, N.-S. (2013). The comparison on the compression measurement value of medical compression stockings. Journal of the Korean Society of Clothing and Textiles, 37(8), 1060-1074. doi:10.5850/JKSCT.2013.37.8.1060   DOI