• Title/Summary/Keyword: Body Core Temperature

Search Result 95, Processing Time 0.023 seconds

Study on the insulation of HTS bushing at cryogenic temperature

  • Kim, W.J.;Shin, H.S.;Park, T.S.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.20-23
    • /
    • 2013
  • In the development of high temperature superconducting (HTS) power machines, HTS bushing is one of core technologies. In particular, the insulation body with sheds and electrical insulation at cryogenic temperature have attracted a great deal of interest from the view point of the size, weight and efficiency of bushing. In this study, the electrical and mechanical characteristics of various insulators for body in liquid nitrogen ($LN_2$) were investigated. And the surface discharge distance, collar length of GFRP sheds were studied. To emit bubbles between sheds, the shape and arrangement of shed were studied. The shed structure for 60 kV class HTS bushing were designed with regular arrangement.

Effects of a Footbath Program on Heart Rate Variability, Blood Pressure, Body Temperature and Fatigue in Stroke Patients (족욕프로그램이 뇌졸중 환자의 심박변이도, 혈압, 체온 및 피로에 미치는 효과)

  • Son, Yu Lim;Yoo, Myung Sook
    • Journal of Korean Biological Nursing Science
    • /
    • v.18 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Purpose: This study was to examine the effects of a footbath program on heart rate variability, blood pressure, body temperature and fatigue of stroke patients with stroke-induced hemiparesis. Methods: A non-equivalent control group pretest-posttest design was used. Participants were 40 stroke patients, twenty for the footbath program and twenty for the control group, who were hospitalized in a long-term rehabilitation hospital in G city of Korea, from February to April 2014. The twenty participants in the experimental group received the intervention of footbaths and an educational program focused on the prevention of stroke complications; Collected data were analyzed by the IBM SPSS WIN 20.0 program using a t-test, ${\chi}^2$ test, Mann-Whitney U test and repeated measures ANOVA. Results: Significant differences were found in heart rate variability, systolic blood pressure, hand and foot temperatures and fatigue between the two groups. But no significant differences were found in diastolic blood pressure, core temperatures, forehead temperatures, and hand temperatures between the two groups. Conclusion: The footbath program was an effective intervention for skin temperature change and fatigue reduction for stroke patients. Therefore, it is recommended that the footbath program can be utilized as an effective nursing intervention for stroke patients in long-term rehabilitation care hospitals.

Determination of Thermal Contact Conductance of an Injection Mold Assembly for the Prediction of Mold Surface Temperature

  • Lee, Ki-Yeon;Kim, Kyeong-Min;Park, Keun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.1008-1012
    • /
    • 2012
  • Injection molds are fabricated by assembling a number of plates in which mold core and cavity components are inserted. The assembled structure causes a number of contact interfaces between each component where the heat transfer is affected by the thermal contact resistance. However, the mold assembly has been treated as a one body in numerical analyses of injection molding, which has a limitation in predicting the mold temperature distribution during the molding cycle. In this study, a numerical approach that considers the thermal contact effect is proposed to predict the heat transfer characteristics of an injection mold assembly. To find the thermal contact conductance between the mold core and plate, a number of finite element (FE) simulations were performed with the design of experiment (DOE) and statistical analysis. Thus, the heat transfer analyses using the obtained conductance values can provide more reliable results than conventional one-body simulations.

The Effects of 30-Minutes of Pre-Warming on Core Body Temperature, Systolic Blood Pressure, Heart Rate, Postoperative Shivering, and Inflammation Response in Elderly Patients with Total Hip Replacement under Spinal Anesthesia: A Randomized Double-blind Controlled Trial (30분의 수술전 가온이 고관절 전치환술 노인 환자의 수술중 심부체온, 수축기압, 심박동수, 수술후 전율 및 염증반응에 미치는 효과)

  • Cheon, You Mi;Yoon, Haesang
    • Journal of Korean Academy of Nursing
    • /
    • v.47 no.4
    • /
    • pp.456-466
    • /
    • 2017
  • Purpose: This study was designed to determine the effects of pre-warming on core body temperature (CBT) and hemodynamics from the induction of spinal anesthesia until 30 min postoperatively in surgical patients who undergo total hip replacement under spinal anesthesia. Our goal was to assess postoperative shivering and inflammatory response. Methods: Sixty-two surgical patients were recruited by informed notice. Data for this study were collected at a 1,300-bed university hospital in Incheon, South Korea from January 15 through November 15, 2013. Data on CBT, systemic blood pressure (SBP), and heart rate were measured from arrival in the pre-anesthesia room to 3 hours after the induction of spinal anesthesia. Shivering was measured for 30 minutes post-operatively. C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) were measured pre-operatively, and 1 and 2 days postoperatively. The 62 patients were randomly allocated to an experimental group (EG), which underwent pre-warming for 30 minutes, or a control group (CG), which did not undergo pre-warming. Results: Analysis of CBT from induction of spinal anesthesia to 3 hours after induction revealed significant interaction between group and time (F=3.85, p=.008). In addition, the incidence of shivering in the EG was lower than that in the CG ($x^2=6.15$, p=.013). However, analyses of SBP, heart rate, CRP, and ESR did not reveal significant interaction between time and group. Conclusion: Pre-warming for 30 minutes is effective in increasing CBT 2 and 3 hours after induction of spinal anesthesia. In addition, pre-warming is effective in decreasing post-operative shivering.

The Effect of Indoor Temperature Change on Human Physiology for Comfort Control during Sleep Early Stage (쾌적제어를 위한 수면 초기 실내온도 변동이 인체 생리에 미치는 영향)

  • Shin, H.J.;Kim, D.G.;Jeong, S.K.;Kum, J.S.;Kim, H.C.
    • Journal of Power System Engineering
    • /
    • v.11 no.3
    • /
    • pp.29-34
    • /
    • 2007
  • Existent researches about indoor thermal environment have been focused on to seek human's comfort in daytime. Also researches about thermal comfort during the sleeping time that is important for resting and recharging to modern people have been seldom existed. At present, as global warming phenomenon is being continued, most people are going through inconvenience by sultriness during the sleeping hours in sweltering summer night. Therefore we need another control method of an air conditioner to keep human's thermal comfort. Ambient temperature is a common factor of the environment, but analysis of its effect on human body physiology is still unknown. The effect of ambient temperature on human sleep has been increasingly studied in the last decade. This research investigated about optimal indoor temperature to maintain proper skin temperature and comfortable sleep when indoor air is cooled by an air conditioner in sweltering summer night.

  • PDF

A Study on the Implementation of SoC for Sensing Bio Signal (인체신호 측정을 위한 SoC 구현에 관한 연구)

  • Sun, Hye-Seung;Song, Myoung-Gyu;Lee, Jae-Heung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.1
    • /
    • pp.109-114
    • /
    • 2010
  • In this paper, the implementation of a human signal sensing module that has capabilities to check and restore the weak signals from the human body is presented. A module presented in this paper consists of processing and sensing elements related to human pulse and body temperature and a controller implemented with SoC design method. PPG data is detected by a noise filtering process toward the amplified signal which is from the operating frequency between 0.1Hz - 10Hz. A digital temperature sensor is used to check the body temperature. A sensor outputs the corresponding value of the electric voltage according to the body temperature. Moreover, this paper discusses the implementation of an enhanced microprocessor which is synthesized with VHDL as a part of the SoC development and used to control the entire module. The SoC processor is implemented on a Xilinx Spartan 3 XC3S1000 device and has the achieved operating frequency of 10MHz. The implemented SoC processor core is successfully tested with macro memories in FPGA and the experimental results are hereby shown.

Efficacy of Cooling Vest for Auxiliary Body Cooling in Hot Environments (1) -Thermophysiological Response of Human Body in Local Cooling- (고온환경 하에서 착용하는 인체냉각 보조도구로서의 Cooling Vest 연구(1) -Local Cooling에 따른 인체의 온열생리학적 특성-)

  • Kwon, Oh Kyung;Kim, Jin-A;Kim, Tae Kyu
    • Fashion & Textile Research Journal
    • /
    • v.2 no.3
    • /
    • pp.265-271
    • /
    • 2000
  • Heat stress results in fatigue, a decline in strength, alertness., and mental capacity. The problem is compounded when high humidity exists. To help relieve worker heat stress, many types of cooling units are marketed. While workers may experience some cooling, critical body core temperatures often continue to elevate. This study was designed to find the effects of three kinds of cooling vest with portable frozen gel strips on thermophysiological parameters and on temperature and humidity within clothing. The heart rate, rectal, and skin temperature as well as sweat rate and clothing microclimate were measured during 80 min in 5 healthy males. Inquiries were also made into the subjective rating thermal, humidity comfort, and fatigue sensations. The main findings in our experiments are as follows: (a) Physiological parameters such as rectal temperature was the lowest in garb A1, intermediate in garb A, and the highest in garb A2 throughout the experiment. And mean skin temperature was the lowest in garb A, intermediate in garb A1, and the highest in garb A2; (b) Temperature and humidity within clothing (back) were garb in Al, intermediate in garb A, and the highest in garb A2. But the temperature and humidity within clothing (chest) were garb in A, intermediate in garb A1, and the highest in garb A2; (c) Most participants (4 out of 5 persons) answered that they felt more comfortable and fatigueless in garb A1 than in garb A and A2. It is concluded that local cooling in garb A1 of the upper torso could physiological reduce the thermal strain in participants wearing cooling vest.

  • PDF

A Study on Thermal and Modal Characteristics for EGR System with Dimpled Rectangular Tube (딤플 사각 튜브형 배기 가스 재순환 시스템의 열 및 진동 특성에 관한 연구)

  • Seo, Young-Ho;Heo, Sung-Chan;Kwon, Young-Seok;Ku, Tae-Wan;Kim, Jeong;Kang, Beom-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.3
    • /
    • pp.115-125
    • /
    • 2008
  • Recently, Exhaust Gas Recirculation (EGR) system which re-flow a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications

  • Dai, Yaonan;Zheng, Xiaotao;Ding, Peishan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3474-3490
    • /
    • 2021
  • Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.

Full Aperture Black Body Design, Fabrication and Validation for Infrared Detector Calibration (적외선 검출기 검보정을 위한 대구경흑체 설계, 제작 및 검증)

  • Cho, Hyokjin;Seo, Hee-Jun;Kim, Keun-Shik;Park, Sung-Wook;Moon, Guee-Won
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.40-45
    • /
    • 2013
  • Satellite's infrared detector shall be calibrated under thermal vacuum environment using a reference black body before a launch. The full aperture black body (FABB) as an infrared calibration reference shall be composed of vacuum compatible materials and temperature controlled from $-40^{\circ}C$ to $+40^{\circ}C$ with emissivity higher than 0.95. The temperature homogeneity over the central 80 % area of the FABB front surface shall be better than 2 K. The FABB designed by thermal and flow analysis was $1m{\times}1m{\times}8mm$ copper plate on which black painted aluminum honeycomb core was attached. Copper tubes were welded on the opposite side of the honeycomb core to allow temperature regulated gaseous nitrogen to flow through them. By the FABB validation test, the temperature homogeneity was observed around 1 K using 20 PT100 sensors and modified COTS infrared camera. The emissivity value was 0.975 at $40^{\circ}C$ under atmospheric pressure.