• Title/Summary/Keyword: Blue LED

Search Result 594, Processing Time 0.029 seconds

Changes of Plant Growth, Leaf Morphology and Cell Elongation of Spinacia oleracea Grown under Different Light-Emitting Diodes (발광다이오드 광원에 따른 시금치 생육, 엽 형태형성 및 세포길이 변화)

  • Lee, Myungok;Park, Sangmin;Cho, Eunkyung;An, Jinhee;Choi, Eunyoung
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.222-230
    • /
    • 2018
  • This study aimed to determine effects of light-emitting diodes on plant growth, leaf morphology and cell elongation of two cultivars ('World-star' and 'Sushiro') of Spinacia oleracea. Plants were grown in a NFT system for 25 days after transplanting (DAT) under the LEDs [White (W), Red and Blue (RB, ratio 2:1), Blue (B), Red (R) LED] under the same light intensity and photoperiod ($130{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 hours). The 'World-star' variety was significantly higher in shoot fresh and dry weights, leaf number, and leaf area than the 'Sushiro' variety. For the 'World-star' variety, the two treatments of mixed light (RB) and red light (R) showed a 35% higher shoot dry weight than that of blue light (B) and white light (W) at 25 DAT. In the 'Sushiro' variety, mixed light (RB) treatment, which had the highest shoot fresh and dry weights, showed 40% higher than the white light (W) treatment, which had the lowest shoot fresh and dry weights. Both varieties showed leaf epinasty symptom at 21 DAT only in both mixed light (RB) and red light (R), and red light (R) treatment showed significantly higher symptom than mixed light (RB), indicating the leaf epinasty is associated with red light. Microscopic observations of the cell size in the leaf center and edge parts showed that the cell density of leaf edge under the red light (R) was lower than that in leaf center, supporting previous reports that suggest an association of the cell size difference between the leaf center and edge with the leaf epinasty occurrence. Since the blue light (B) plays a role in alleviating the epinasty symptom caused by the red light (R), it seems necessary to identify the appropriate mixing ratio of the two light sources. In addition, the World-star variety seems to be more suitable for the cultivation of plant factory using LED light sources.

Backlight Unit adopting high power RGB-LEDs (고출력 RGB-LED를 사용한 Backlight 개발)

  • Lee, Han-Jin;Park, Doo-Sung;Han, Jeong-Min;Park, Jeong-Kuk;Bae, Kyung-Woon;Kim, Seo-Yoon;Kim, Yun-Ho;Lim, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1038-1042
    • /
    • 2003
  • LED(Light Emitting Diodes)를 이용한 LCD 백라이트는 현재까지 모바일용의 $2{\sim}3$ 인치정도의 소형모델에서 상용화되고있다. 현재 동종분야에서 $5{\sim}7$ 인치 이상의 중대형에서는 아직 검토나 개발단계인 것으로 파악되고 있다. LED의 특징인 장수명, 고색순도, Robustness 등의 장점에도 불구하고 광효율이나 경제적측면에서 아직 형광램프 Type 에 비해 개선점이 남아있는 것도 개발지연 이유중의 하나다. 최근에 일부 광원업체에서 소비전력 5W로 높은 출광효율을 갖는 고휘도를 가진 LED가 개발되고있다. 고색재현성을 요구하는 TV등의 민수용 디스플레이시장이 커지는 현 추세에 한 방법으로 3색의 고휘도 LED광원을 사용한 백 라이트를 개발했다. R(Red), G(Green), B(Blue)의 3색 점광원 다수를 이중도광판 구조의 장변에 일정 간격으로 배열하여 최종 출사면에서 백색이 되도록 소정의 구성비로 설계하였다. 점광원간의 간격으로 인해 발생되는 혼색도를 보완하기위해 광원과 출사면까지의 광경로를 점광원이 아닌 튜브형의 형광광원 사용시보다 일정량 길게 설계해야 되는데, 이것으로 인해 출광효율이 형광램프구조에 비해 떨어지는 결과로 나타났다. 본 연구에서는 17인치 모니터구조의 백라이트에서 색재현성 105%와 소비전력 67W에서 표면휘도 $2000cd/m^2$ 정도를 달성하였다.

  • PDF

Analysis and Design of High-Brightness LEDs (고휘도 LED의 구조 해석 및 설계)

  • 이성재;송석원
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.6
    • /
    • pp.79-91
    • /
    • 1998
  • Design principles for high-brightness ligh-temitting diodes have been derived by using escape cone concepts. Based on the design principles, some important high-brightness LED structures developed thus far have been reviewed and, in addition, their external coupling efficiencies have also been estimated. In AlGaAs or InGaAIP LEDs, in which photon absorption in the ohmic electrodes is known to be serious, photon shielding by the electrodes is minimized by using window layer (WL) as well as transparent substrate (TS) leading to significantly improved light-emitting efficiency. However, in InGaN LEDs emitting blue to green lights, the photon absorption in ohmic contact to wide bandgap GaN may be negligible and therefore, photon shielding by the electrodes would not lead to as significant problems as in conventional In AIGaAs or InGaAIP LEDs.

  • PDF

Effect of light-emitting diode (LED) on in vitro shoot growth and rooting in teak (Tectona grandis L.) (티크의 기내 줄기 생장 및 발근에 미치는 LED (light-emitting diode) 효과)

  • Lee, Na-Nyum;Kim, Ji-Ah;Kim, Yong-Wook
    • Journal of Plant Biotechnology
    • /
    • v.46 no.4
    • /
    • pp.291-296
    • /
    • 2019
  • This study was conducted to determine the effect of a light-emitting diode (LED) on in vitro shoot growth and rooting in teak (Tectona grandis L.). In the experiments with apical bud explants, the greatest shoot elongation (3.2 cm) occurred when they were cultured on DKW medium under 50% blue and 50% red LED mixture (BR), whereas no differences in growth were observed in different light sources (florescent light [F] or BR) or media (MS or DKW). The highest number of shoot multiplication (2.4/explant) or elongation (4.94 cm) was achieved with 0.5 or 1.0 mg/L 6-Benzyladenine (BA) treatment under BR. In addition, the best rooting rate (93.8%) or root length (1.3 cm) was recorded with 0.5 mg/L indole-3-butyric acid (IBA) treatment under BR, and the highest root induction (3.1/explant) was observed in 0.2 mg/L IBA under BR. The in vitro rooted plantlets were hardened and survived well on soil.

Synthesis of all-inorganic halide perovskite nanocrystal and film fabrication for application in highly efficient optoelectronic device (고효율 광전자 소자 응용을 위한 전 무기 할라이드 페로브스카이트 나노결정 합 성 및 필름 제작)

  • Choi, Seung Hee;Kim, Hyun Bin;Yoo, Jung Hyeon;Kwon, Seok Bin;Jeong, Seong Guk;Song, Young Hyun;Yoon, Dae Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.106-111
    • /
    • 2018
  • Halide perovskite nanocrystals have become attractive for LED applications due to their high color purity and excellent luminescent properties. $CsPbX_3$ (X = I, Br, and Cl) nanocrystals were synthesized by hot-injection method and the emission wavelength was controlled by changing the composition of halide ion. Green- and red-emitting films were fabricated using a polymer binder. The outstanding optical properties of the synthesized nanocrystals and fabricated films were confirmed. The wLED designed by green- and red-emitting perovskite nanocrystal films on blue InGaN LED was characterized.

Synthesis and luminescence properties of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors ($Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ 형광체의 합성과 발광 특성)

  • Sung, Hye-Jin;Huh, Young-Duk
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.6
    • /
    • pp.267-272
    • /
    • 2006
  • A series of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors have been synthesized by solid-state reaction. The photoluminescence and structural properties of $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ have been examined. The $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ phosphors have a strong absorption at 400 nm, which is the emission wavelength of a violet light emitting diode (LED). The emission peaks of $SrGa_2S_4:Ce,Na$are located at 448 nm and 485 nm. The partial replacement of Sr by Ca in $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ causes a red shift of emission wavelengths. The $Sr_{1-x}Ca_xGa_2S_4:Ce,Na$ can be used as blue emitting phosphors pumped by the violet LED for fabricating the multi-band white LED.

Implementation of the Equalization Circuits for High Bandwidth Visible Light Communications Using Phosphorescent White LED (인광성 백색 LED의 가시광 통신 변조 대역폭 향상을 위한 등화기 구현)

  • Sohn, Kyung-Rak
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.473-477
    • /
    • 2015
  • In this paper, a commercial phosphorescent white light-emitting diode (WLED) visible light communication (VLC) system with an equalization circuit to achieve the high modulation bandwidth was designed and demonstrated. An analytical method to examine the performance of the equalizer was carried out using a general circuit-simulator, PSpice. The equalization circuit was composed of two passive filters with resisters and a capacitor and an active filter with an op-amp. Utilizing our post-equalization technology, the ~3.5 MHz bandwidth of phosphor WLED could be extended to ~25 MHz without using an optical blue-filter. In this VLC system with a single round-type WLED and a single PIN photo-diode, ASK data transmission up to 35 Mbps at a 1m free space distance was obtained. The resulting bit-error-rate was $7.6{\times}10^{-4}$, which is less than the forward error correction (FEC) limit of $3.8{\times}10^{-3}$.

Fabrication and Characterization of InGaN/GaN LED structures grown on selectively wet-etched porous GaN template layer

  • Beck, Seol;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.124-124
    • /
    • 2010
  • Much interest has been focused on InGaN-based materials and their quantum structures due to their optoelectronics applications such as light emitting diode (LED) and photovoltaic devices, because of its high thermal conductivity, high optical efficiency, and direct wide band gap, in spite of their high density of threading dislocations. Build-in internal field-induced quantum-confined Stark effect in InGaN/GaN quantum well LED structures results in a spatial separation of electrons and holes, which leads to a reduction of radiative recombination rate. Therefore, many growth techniques have been developed by utilizing lateral over-growth mode or by inserting additional layers such as patterned layer and superlattices for reducing threading dislocations and internal fields. In this work, we investigated various characteristics of InGaN multiple quantum wells (MQWs) LED structures grown on selectively wet-etched porous (SWEP) GaN template layer and compared with those grown on non-porous GaN template layer over c-plane sapphire substrates. From the surface morphology measured by atomic force microscope, high resolution X-ray diffraction analysis, low temperature photoluminescence (PL) and PL excitation measurements, good structural and optical properties were observed on both LED structures. However, InGaN MQWs LED structures grown on SWEP GaN template layer show relatively low In composition, thin well width, and blue shift of PL spectra on MQW emission. These results were explained by rough surface of template layer, reduction of residual compressive stress, and less piezoelectric field on MQWs by utilizing SWEP GaN template layer. Better electrical properties were also observed for InGaN MQWs on SWEP GaN template layer, specially at reverse operating condition for I-V measurements.

  • PDF

Effect of Light Emitting Diode and Fluorescent Light on Volatile Profiles of Soybean Oil during Storage (콩기름 저장 중 휘발성분에 대한 LED와 형광등 광원 조사의 영향)

  • Park, In-Seon;Choi, Duck-Joo;Youn, Aye-Ree;Lee, Youn-Jung;Kim, Youn-Kyeong;Kim, Mun-Ho;Choi, So-Rye;Kim, Ki Hwa;Dong, Hyemin;Han, Hyun Jung;Noh, Bong Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.763-769
    • /
    • 2013
  • Soybean oil was stored in polyethylene for 12 weeks at $20^{\circ}C$. The influence of LED (light emitting diode) irradiation on four different wavelengths and fluorescent light was investigated. The pattern changes of volatile components in soybean oil was analyzed by electronic nose based on mass spectrometer. The obtained data from electronic nose were analyzed by discrimination function analysis. Under fluorescent light, the discriminant function first score (DF1) was significantly moved from positive position to negative one after 4-12 weeks. It means that the volatile compounds related to quality of lipid. It was shown to increase slowly due to green light of LED treatment, while blue and white LED light was influenced significantly as well as fluorescent light irradiation. Selection of LED irradiation would provide to keep good quality of soybean oil under distribution chain system.

Comparison of Combined Light-emitting Diodes and Fluorescent Lamps for Growth and Light Use Efficiency of Red Leaf Lettuce (혼합 발광다이오드와 형광등에서 자란 적치마 상추의 생육 및 광 이용 효율 비교)

  • Son, Ki-Ho;Song, Min-Jeong;Oh, Myung-Min
    • Journal of Bio-Environment Control
    • /
    • v.25 no.3
    • /
    • pp.139-145
    • /
    • 2016
  • The objective of this study was to compare the growth and light use efficiency of red leaf lettuce grown under three types of combined light-emitting diodes (LEDs) and fluorescent lamps (FL) in a closed-type plant production system. The eighteen days-old lettuce seedlings of red leaf lettuce (Lactuca sativa L., 'Jeokchima') were transplanted to the close-type plant production system equipped with three types of combined LEDs with red (R, 655 nm), blue (B, 456 nm), green (G, 515 nm), and white (W, 456 nm + 558 nm) (R:B=8:2, R:W:B=8:1:1, R:G:B=8:1:1) and FL. The seedlings were grown under normal growth conditions ($20^{\circ}C$, $181{\pm}4{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, 12 h photoperiod) for four weeks. Lettuce plants grown under FL had significantly higher leaf shape index than those under all LED treatments. Although growth of shoots and roots was not show any significant difference among LED treatments, all of the LED treatments induced about 34% higher shoot fresh weight than that of the FL. On the other hands, the total power consumption of FL was 145 kW for 4 weeks, while the mean value of LED treatments was 54 kW, which was about 3 times lower value than that of the FL. The light use efficiency based on dry matter in LED treatments was about 34 mg/W and this was about 3.5 times higher energy saving value than the FL. In conclusion, this study showed that irradiation of optimal combined LEDs in closed-type plant production systems can improve the lettuce growth as well as maximize in light use efficiency through energy saving than the FL.