• Title/Summary/Keyword: Blood glucose and lipid regulation

Search Result 31, Processing Time 0.029 seconds

Effect of Lactic Acid Bacteria on the Regulation of Blood Glucose Level in Streptozotocin-induced Diabetic Rats

  • Yeo, Moon-Hwan;Seo, Jae-Gu;Chung, Myung-Jun;Lee, Hyun-Gi
    • Reproductive and Developmental Biology
    • /
    • v.34 no.4
    • /
    • pp.299-304
    • /
    • 2010
  • To identify the treatment effect of lactic acid bacteria for diabetes, the treatment effects of a single administration of acarbose (a diabetes treatment drug) or lactic acid bacteria, and the mixture of acarbose and lactic acid bacteria on diabetes in a type 1 diabetes animal model, were studied. In this study, streptozotocin was inoculated into a Sprague-Dawley rat to induce diabetes, and sham control (Sham), diabetic control (STZ), STZ and composition with live cell, STZ and composition with heat killed cell, STZ and composition with drugs (acarbose) were orally administered. Then the treatment effect on diabetes was observed by measuring the body weight, blood glucose, and serum lipid. For the histopathological examination of the pancreas, the Langerhans islet of the pancreas was observed using hematoxylin and eosin staining, and the renal cortex, outer medullar, and inner medullar were also observed. The induced diabetes decreased the body weight, and the fasting blood glucose level decreased in the lactic-acid-bacteria-administered group and the mixture-administered group. In addition, the probiotic resulted in the greatest decrease in the serum cholesterol level, which is closely related to diabetes. Also, the hematoxylin and eosin staining of the Langerhans islet showed that the reduction in the size of the Langerhans islet slowed in the lactic-acid-bacteria-administered group. The histopathological examination confirmed that the symptoms of diabetic nephropathy decreased in the group to which viable bacteria and acarbose were administered, unlike in the group to which dead bacteria was administered. The mixture of lactic acid bacteria and acarbose and the single administration of lactic acid bacteria or acarbose had treatment effects on the size of the Langerhans islet and of the kidney histopathology. Thus, it is believed that lactic acid bacteria have treatment effects on diabetes and can be used as supplements for the treatment of diabetes.

Hypoglycemic and antioxidant effects of jaceosidin in streptozotocin-induced diabetic mice (Jaceosidin이 streptozotocin으로 유도된 당뇨 쥐의 혈당강하 및 항산화능에 미치는 영향)

  • Park, Eunkyo;Kwon, Byoung-Mog;Jung, In-Kyung;Kim, Jung-Hyun
    • Journal of Nutrition and Health
    • /
    • v.47 no.5
    • /
    • pp.313-320
    • /
    • 2014
  • Purpose: In this study, we investigated the effects of jaceosidin on blood glucose regulation in type 1 diabetic mice. Methods: C57BL/6 mice were divided into four groups; normal control (Normal), diabetes control (D-Control), diabetes low-jaceosidin (D-0.005%), and diabetes high-jaceosidin (D-0.02%). Type 1 diabetes was induced by streptozotocin and mice were then fed a diet containing jaceosidin for eight weeks. Fasting blood glucose, oral glucose tolerance test, insulin tolerance test, lipid peroxidation, and antioxidant enzyme activities were assessed. Results: Jaceosidin supplementation for eight weeks had no effect on body weight, organ weight, and blood lipid profiles. However, jaceosidin supplementation significantly lowered fasting blood glucose level and reduced insulin resistance. We also found that jaceosidin supplementation increased antioxidant capacity by enhancement of catalase and GSH-px activities. Conclusion: These results suggest that jaceosidin could be a therapeutic candidate to ameliorate hyperglycemia through increase of antioxidant enzyme activity.

Development of an anti-obesity dietary supplement inhibiting the digestion of carbohydrate and lipid (비만 개선 효과를 지닌 탄수화물 및 지방 흡수 억제 기능성 식이조성물 개발)

  • 윤유식;최선미;홍순복;홍정미;김정원;이홍석;홍성길
    • Korean journal of food and cookery science
    • /
    • v.18 no.3
    • /
    • pp.319-324
    • /
    • 2002
  • In a previous study, we developed a new food additive as an egg yolk antibody (IgY) against carbohydrate digestion enzymer for the regulation of blood glucose level and weight control. The IgY delayed and decreased the increment if blood glucose level after administration of sucrose in human being by 30% in 20∼30 min. We also developed a lipase inhibitor as a water extract of two kinds of herb, Platycodon grandiflorum and Solanum Melongena, Twenty three volunteers were subjected to the intake of the egg yolk IgY Plus the herbal extracts for 50 days. In average, the treated subjects appeared to lose 1.96 kg of body weight and 3.4 kg of body fat mass during the treated period. Furthermore, Panniculus adiposus and breech size were significantly decreased during the experimental period. Above results suggested that the administration of the dietary additives composed of egg yolk IgY and natural herbal extract improve the obesity by the decrement of body weight and body fat mass.

Effects of Schisandra Fructus hexane fraction on high fat diet induced hyperlipidemic mice (오미자(五味子) 헥산 분획 추출물이 고지방 식이에 의한 고지혈증 생쥐의 지질대사 및 간 조직 유전자 발현에 미치는 영향)

  • Kim, Hyun-Young;Park, Sun-Mi;Kim, Young-Kyun
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.13-28
    • /
    • 2014
  • ■ Objectives The berries of Schisandra chinensis (Schisandra Fructus) are given the name Omiza in Koreane(五味子), and have been used asremedies for many ailments: to resist infections, increase skin health, and combat insomnia, coughing, and thirst. This study was designed to investigate the effects of Schisandra Fructus hexane fraction (SFH) on serum lipid levels in Hyperlipidemic mice. ■ Methods In this experiment, effects on total cholesterol, HDL-cholesterol, triglyceride, AST, ALT, fasting blood glucose in serum were measured. And in addition, histopathological and gene expression changes in liver tissue was also observed. ■ Results SFH did not affects weight gain, serum AST and ALT in hyperlipidemic mice. Oral administration of SFH lowered levels of total cholesterol and triglyceride, which were elevated by induction of hyperlipidemia. Finally, administration of SFH lowered fasting blood glucose significantly. And SFH also ameliorates anti-oxidative stress systems in internal organs which play key role in disease prevention. ■ Conclusion Results in our study suggest that SFH can prevent obese through regulation of dyslipidemia and hyperglycaemia.

  • PDF

Improvements Caused by Chitosan, Sericin and Collagen Peptide Extract Complexes on Lipid Metabolism in Dyslipidemia (키토산과 세리신 및 콜라겐 펩타이드 추출 혼합물이 이상지질혈증의 지질대사 개선에 미치는 영향)

  • Kim, Han-Soo;Jang, Seong-Ho;Yoon, Myung-Joo;Kang, Jin-Soon;Choi, Woo-Seok
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.1021-1030
    • /
    • 2011
  • The objective of this study was to assess improvements caused by chitosan, sericin and collagen peptide extract complexes (1:1:1, w/w/w, CSC-F-005) in lipid concentrations in the sera of dyslipidemic rats (SD strain) fed on experimental diets for 5 weeks. Serum concentrations of total cholesterol, HDL-cholesterol, ratio of HDL-cholesterol concentration to total cholesterol, atherosclerotic index, LDL-cholesterol, free cholesterol, cholesteryl ester, triglyceride, phospholipid and blood glucose were effective on the metabolic regulation of dyslipidemic rats. The activities of alkaline phosphatase, aspartate aminotransferase and alanine aminotransferase in serum were remarkably lower in the extract complexes (CSC-F-005) than in the dyslipidemic model. From the above results shows that CSC-F-005 extract complexes were effective on the improvement of the lipid metabolism in sera of dyslipidemic rats.

Effect of Yagwan-cheunghyeoltang on Obesity in Rats Induced by High Fat Diet (야관청혈탕이 고지방식이로 유도된 흰쥐의 비만 억제에 미치는 영향)

  • Park, Sang-Woo;Cho, Chung-Sik;Kim, Chul-Jung
    • The Journal of Internal Korean Medicine
    • /
    • v.32 no.2
    • /
    • pp.170-187
    • /
    • 2011
  • Background : Obesity, the syndrome caused by a high fat diet, is a disease. At the same time, obesity causes diabetes mellitus, hyperlipidemia, and cardiovascular disease. Recently, its prevalence rate is increasing. Yagwan-cheunghyeoltang (YCT) used in this experiment is the prescription of Yagwanmoon added to Cheunghyeol-tang which is reported to be very effective in weight loss controlling and serum cholesterol. It is also reported that Yagwanmoon has significant antioxidant effects and YCT has a significant effect on blood glucose control. Objectives : This study was conducted to experimentally evaluate the effects of YCT on obesity in rats induced by high fat diet. Methods : The experiment was conducted with 4-week-old male rat s divided into 5 groups. They were a normal diet group, a high fat diet group, a positive drug control group, a 1% YCT group, and a YCT 3% group, and were tested for eight weeks. After four weeks of inducing obesity by a high fat diet, rats were allowed to lose weight by following the normal diet group, approximately 30% compared with 10 rats in each group were determined as still obese. Changes in body weight and organ weight and serum cholesterol, triglyceride, glucose-density, low density lipoprotein cholesterol, antioxidant activity were checked. Results : In the experimental groups, we observed weight loss and visceral fat reduction, improvement of liver function, reduction of serum glucose, activation of HMG-CoA reductase inhibitor, reduction of concentrations of leptin and it showed a significant effect on antioxidants and lipid peroxidation. Conclusions : YCT has significant effects on the regulation of hyperlipidemia and lipid peroxidation associated with obesity and has significant effects on, antioxidants and lipid peroxidation, too. Additional clinical studies are needed.

The Hypoglycemic Effects of Acarviosine-Glucose Modulate Hepatic and Intestinal Glucose Transporters In vivo

  • Chung, Mi-Ja;Lee, Young-Soo;Kim, Byoung-Chul;Lee, Soo-Bok;Moon, Tae-Hwa;Lee, Sung-Joon;Park, Kwan-Hwa
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.851-855
    • /
    • 2006
  • Acarviosine-glucose (AcvGlc) is an ${\alpha}$-glucosidase inhibitor and has similar inhibitory activity to acarbose in vitro. We synthesized AcvGlc by treating acarbose with Bacillus stearothermophilus maltogenic amylase and fed C57BL/6J and db/db mice with diets containing purified AcvGlc and acarbose for 1 week. AcvGlc (50 and 100 mg/100 g diet) significantly reduced plasma glucose and triglyceride levels in db/db mice by 42 and 51 %, respectively (p<0.0001). The hypoglycemic and hypotriglyceridemic effects of AcvGlc were slightly, but significantly, greater than those seen with acarbose treatment (p<0.0001) in C57BL/6J mice. In an oral glucose tolerance test, glucose tolerance was significantly improved at all time points (p<0.01). The expression of two novel glucose transporters (GLUTs), GLUT10 and GLUT12, were examined by Western blot analysis. GLUT10 was markedly increased in the db/db livers. After AcvGlc treatment, the expression of hepatic GLUT10 was decreased whereas intestinal GLUT12 was significantly increased in both strains of mice. Our results show that AcvGlc improves plasma lipid and glucose metabolism slightly more than acarbose. Regulation of hepatic GLUT10 and intestinal GLUT12 may be important in controlling blood glucose levels.

Effects of starvation-induced negative energy balance on endoplasmic reticulum stress in the liver of cows

  • Islam, Md Aminul;Adachi, Shuya;Shiiba, Yuichiroh;Takeda, Ken-ichi;Haga, Satoshi;Yonekura, Shinichi
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.22-28
    • /
    • 2022
  • Objective: Endoplasmic reticulum (ER) stress engages the unfolded protein response (UPR) that serves as an important mechanism for modulating hepatic fatty acid oxidation and lipogenesis. Chronic fasting in mice induced the UPR activation to regulate lipid metabolism. However, there is no direct evidence of whether negative energy balance (NEB) induces ER stress in the liver of cows. This study aimed to elucidate the relationship between the NEB attributed to feed deprivation and ER stress in bovine hepatocytes. Methods: Blood samples and liver biopsy tissues were collected from 6 non-lactating cows before and after their starvation for 48 h. The blood non-esterified fatty acids (NEFA), β-hydroxybutyric acid (BHBA) and glucose level were analyzed. Real-time quantitative polymerase chain reaction and Western blotting were used to explore the regulation of genes associated with UPR and lipid metabolism. Results: The starvation increased the plasma BHBA and NEFA levels and decreased the glucose level. Additionally, the starvation caused significant increases in the mRNA expression level of spliced X-box binding protein 1 (XBP1s) and the protein level of phosphorylated inositol-requiring kinase 1 alpha (p-IRE1α; an upstream protein of XBP1) in the liver. The mRNA expression levels of peroxisome proliferator-activated receptor alpha and its target fatty acid oxidation- and ketogenesis-related genes were significantly upregulated by the starvation-mediated NEB. Furthermore, we found that the mRNA expression levels of lipogenic genes were not significantly changed after starvation. Conclusion: These findings suggest that in the initial stage of NEB in dairy cows, the liver coordinates an adaptive response by activating the IRE1 arm of the UPR to enhance ketogenesis, thereby avoiding a fatty liver status.

Effect of African Mango (Irvingia gabonesis, IGOB 131TM) Extract on Glucose Regulation in STZ-Induced Diabetes (Streptozotocin으로 유발한 당뇨동물 모델에서 아프리칸 망고 추출물의 혈당 조절 효과)

  • Ha, Yejin;Lee, Minhee;Kwon, Han Ol;Lee, Yoo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.11
    • /
    • pp.1607-1611
    • /
    • 2015
  • This study investigated the regulatory effects of African mango (Irvingia gabonesis, IGOB $131^{TM}$) extract on blood glucose level in streptozotocin (STZ)-induced diabetic rats. Experimental groups were treated with two different doses of IGOB $131^{TM}$ (1% and 2% in each AIN93G supplement) for 5 weeks [4 weeks pre-treatment and 1 week post-STZ treatment (60 mg/kg body weight)]. STZ-induced diabetic rats showed significantly reduced body weight gain compared to normal control (NC). Oral glucose tolerance test (OGTT) was measured using glucose oxidase-peroxidase reactive strips. The area of under the curve for the glucose response from OGTT in STZ-induced diabetic rats was higher than that of NC rats, and there was a significant difference between the DM and the IGOB $131^{TM}$-treated groups. Serum glucose levels after sacrifice were significantly lower in the IGOB $131^{TM}$ group than the DM group. However, there was no statistical difference between low- and high-dose treatments. Serum insulin levels increased by 234.4% and 175.9%, respectively, upon treatment with IGOB $131^{TM}$. Serum lipid profiles were not significantly different among the experimental groups. The tested samples had no effects on serum levels of lipid profiles (triglyceride, total cholesterol, low density lipoprotein/very low density lipoprotein-cholesterol, high density lipoprotein-cholesterol). These results suggest that IGOB $131^{TM}$ is able to ameliorate diabetes by reducing serum glucose levels that may result from increased insulin levels.

Red Ginseng Alters Lipid Metabolism through AMPK Activation in Liver and Adipose Tissues of High-Fat Diet-Fed Mice (홍삼 복합 추출물의 AMPK 활성화를 통한 고지혈증 개선)

  • Jeong, Ha Jin;Oh, Seung Tack;Liu, Quan Feng;Choi, Yura;Lee, Seoungmi;Jeon, Songhee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.8
    • /
    • pp.910-918
    • /
    • 2017
  • Hyperlipidemia is known as a glucose and lipid metabolism-related disorder that is increasing in incidence in modern society. Red ginseng (RG) is a natural herb candidate with a positive effect on regulation of cholesterol and lipids. To observe the effects of RG on regulation of lipids, cholesterol, glucose, and oxidative stress, we examined the in vitro and in vivo effects of Chamdahan RG on differentiated 3T3-L1 adipocytes and high-fat diet-fed mice. RG ($50{\mu}g/mL$) significantly inhibited lipid synthesis in 3T3-L1 cells. In addition, a low concentration of RG (880 mg/kg/d) resulted in the lowest total blood cholesterol level. Moreover, high density lipoprotein-cholesterol quantity increased in RG-treated groups, consequently lowering the cardiovascular risk factor and atherosclerosis index. Moreover, RG increased activity of AMP-activated protein kinase, as a regulator of lipid and cholesterol synthesis, in adipose and liver tissues. Cumulatively, this paper suggests that RG has a positive effect on reducing the amounts of cholesterol and lipids and may be a good candidate for treating hyperlipidemia.