• Title/Summary/Keyword: Blocking Capacitor

Search Result 42, Processing Time 0.028 seconds

Hybrid Double Direction Blocking Sub-Module for MMC-HVDC Design and Control

  • Zhang, Jianpo;Cui, Diqiong;Tian, Xincheng;Zhao, Chengyong
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1486-1495
    • /
    • 2019
  • Dealing with the DC link fault poses a technical problem for an HVDC based on a modular multilevel converter. The fault suppressing mechanisms of several sub-module topologies with DC fault current blocking capacity are examined in this paper. An improved half-bridge sub-module topology with double direction control switch is also designed to address the additional power consumption problem, and a sub-module topology called hybrid double direction blocking sub module (HDDBSM) is proposed. The DC fault suppression characteristics and sub-module capacitor voltage balance problem is also analyzed, and a self-startup method is designed according to the number of capacitors. The simulation model in PSCAD/EMTDC is built to verify the self-startup process and the DC link fault suppression features.

New capacitor switching schemes to control subsynchronous resonance (SSR을 제어하기 위한 새로운 캐패시터 스위칭방법에 관한 연구)

  • 이훈구;이승환;강승욱;한경희;정연택
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.67-73
    • /
    • 1996
  • Subsynchronous resonance(SSR) causes a torsional shaft torque on the generator. Damages resulting from the uncontrolled SSR have resulted in the breakdown in the shaft and costs for replacement power. This paper is to determine the feasibility of controlling SSR by the fast modulation of series compensation capacitors. The presence of subsynchronous currents in the system was detected by a subsynchronous relay which was modeled by the transient analysis of control systems(TACS) in electromagnetic transients program (EMTP). The capacitor segments were switched by bi-directional thyristor switches. These were modeled into EMTP. The strategy to switch the capacitors were modeled as a closed loop system. The paper proves that effective control of SSR can be obtained only by the detuning of the system and the removal or blocking of subsynchronous energy from the system. (author). refs., figs., tabs.

  • PDF

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

A study on the fabrication and characteristics of the scaled MONOS nonvolatile memory devices for low voltage EEPROMs (저전압 EEPROM을 위한 Scaled MONOS 비휘발성 기억소자의 제작 및 특성에 관한 연구)

  • 이상배;이상은;서광열
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.727-736
    • /
    • 1995
  • This paper examines the characteristics and physical properties of the scaled MONOS nonvolatile memory device for low programming voltage EEPROM. The capacitor-type MONOS memory devices with the nitride thicknesses ranging from 41.angs. to 600.angs. have been fabricated. As a result, the 5V-programmable MONOS device has been obtained with a 20ms programming time by scaling the nitride thickness to 57.angs. with a tunneling oxide thickness of 19.angs. and a blocking oxide thickness of 20.angs.. Measurement results of the quasi-static C-V curves indicate, after 10$\^$6/ write/erase cycles, that the devices are degraded due to the increase of the silicon-tunneling oxide interface traps. The 10-year retention is impossible for the device with a nitride less than 129.angs.. However, the MONOS memory device with 10-year retentivity has been obtained by increasing the blocking oxide thickness to 47.angs.. Also, the memory traps such as the nitride bulk trap and the blocking oxide-nitride interface trap have been investigated by measuring the maximum flatband voltage shift and analyzing through the best fitting method.

  • PDF

A Capacitor-Charging Power Supply Using a Series-Resonant Three-Level Inverter Topology

  • Song I. H.;Shin H. S.;Choi C. H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.301-303
    • /
    • 2001
  • In this paper we present a Capacitor Charging Power Supply (CCPS) using a series-resonant three-level inverter topology to improve voltage regulation and use semiconductor switches having low blocking voltage capability such as MOSFETs. This inverter can be operated with two modes, Full Power Mode (FPM) and Half Power Mode (HPM). In FPM inverter supplies the high frequency step up transformer with full DC-link voltage and in HPM with half DC-link voltage. HPM switching method will be adopted when CCPS output voltage reaches the preset target value and operates in refresh mode-charge is maintained on the capacitor. In this topology each semiconductor devices blocks a half of the DC-link voltage[2]. A 15kW, 30kV CCPS has been built and will be tested for an electric precipitator application. The CCPS operates from an input voltage of 500VDC and has a variable output voltage between 10 to 30kV and 1kHz repetition rate at 44nF capacitive load [3]. A resonant frequency of 67.9kHz was selected and a voltage regulation of $0.83\%$ has been achieved through the use of half power mode without using the forced cut off the switch current [1]. The theory of operation, circuit topology and test results are given.

  • PDF

Build-up of DC/Impulse Superposition Testing System for XLPE materials in HVDC cables (HVDC 케이블용 XLPE 절연 재료에 대한 DC/Impulse 중첩실험 시스템 구축)

  • Kim, Jeong-Tae;Kim, Dong-Uk
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1608-1609
    • /
    • 2011
  • In this study, in order to develop the evaluation method for XLPE materials for HVDC cables, DC/Impulse superposition testing system was builded up. Throughout the P-spice simulation, optimal values of the protection resistor for the DC generation system and the blocking capacitor for the Impulse generator were calculated. DC/Impulse superposition system showed good result maintaining their proper wave shapes and amplitudes. This system would be planned to apply to the evaluation of XLPE materials for HVDC cables.

  • PDF

Power Factor Improvement of Single-Phase Three-level Boost Converter (단상 Three-level boost converter의 역률개선)

  • 서영조
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.384-387
    • /
    • 2000
  • In this paper Power factor correction circuit of single-phase three-level boost converter is proposed. The advantage of the proposed control scheme for three-level boost converter are low blocking voltage of each power device low THD(Total Harmonic Distortion) and high power factor. The control scheme is based on the current comparator capacitor compensator and region detector, In simulations the proposed system is validated.

  • PDF

A Study on Transformer Saturation in Isolated Full-bridge Type Power Converters (절연형 풀브리지 타입 전력변환기에서의 변압기 포화에 관한 연구)

  • Kim, Jeonghun;Cha, Honnyong;Kim, Heung-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.40-42
    • /
    • 2019
  • 절연형 전력변환기에서 사용되는 고주파 변압기는 반도체 소자의 스위칭 시간, 전압 강하, 게이트 신호의 불균형 등으로 인해 변압기의 양과 음의 전압-시간(volt-second)에 차이가 발생할 수 있다. 본 논문은 절연형 풀브리지 타입 전력변환기에서 DC 성분에 의한 변압기 코어의 포화문제를 방지하기 위해 사용되는 DC 블로킹 캐패시터(DC blocking capacitor)의 설계 방법에 대해 분석하고 실험을 통해 증명한다.

  • PDF

A Study on the TDDB Characteristics of Superthin ONO structure (초박막 GNO 구조의 TDDB 특성에 관한 연구)

  • 국삼경;윤성필;이상은;김선주;서광열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.25-29
    • /
    • 1997
  • Capacitor-type MONOS (metal-oxide-nitride-oxide- semiconductor) NVSMs with 23$\AA$ tunneling oxide and 40$\AA$ blocking oxide were fabricated. The thicknesses of nitride layer were 45$\AA$, 91$\AA$ and 223$\AA$, Breakdown characteristics of MONOS devices were measured to investigate the reliability of superthin ONO structure using ramp voltage and constant voltage method. Reducing the nitride thickness will significantly increase the reliablity of MONOS NVSM.

  • PDF

Prediction of Impedance Characteristics of Multi-Layer Ceramic Capacitor Based on Coupled Transmission Line Theory (결합 전송선로 이론을 이용한 적층 세라믹 커패시터의 임피던스 특성 예측)

  • Jeon, Jiwoon;Kim, Jonghyeon;Pu, Bo;Zhang, Nan;Song, Seungjae;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.135-147
    • /
    • 2015
  • With the miniaturization and digitalization of electronics industry, demand for Multi-Layer Ceramic Capacitor(MLCC) has increased steadily because of its various applications such as DC Blocking, Decoupling and Filtering etc. The modeling techniques of MLCC has been studied for a long time but most of these modeling method can only be applied after measurement and this has some losses of material, time in both production stage and measurement stage. This paper proposes the modeling method which can predict the frequency characteristics of MLCC from structure data and material data in design stage. The impedance of N-Layer Capacitor can be expressed in differential mathematical form based on coupled transmission line equations. By using this formula, we can predict the impedance of MLCC. As a result, proposed modeling is correspond with simulation, and it takes much less time to obtain the result than the simulation.