• 제목/요약/키워드: Block copolymers

검색결과 245건 처리시간 0.059초

Biased hooking for primitive chain network simulations of block copolymers

  • Masubuchi Yuichi;Ianniruberto Giovanni;Marrucci Giuseppe;Greco Francesco
    • Korea-Australia Rheology Journal
    • /
    • 제18권2호
    • /
    • pp.99-102
    • /
    • 2006
  • Primitive chain network model for block copolymers is used here to simulate molecular dynamics in the entangled state with acceptable computational cost. It was found that i) the hooking procedure rearranging the topology of the entangled network is critical for the equilibrium structure of the system, and ii) simulations accounting for the different chemistry, i.e., with a biased hooking probability based on interaction parameter ${\chi}$ for selection of the hooked partner, generates a reasonable phase diagram.

Smart Polymeric Micelles as Nanocarriers for Gene and Drug Delivery

  • Kataoka, Kazunori
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.54-55
    • /
    • 2006
  • Polymeric micelles, supramolecular assemblies of block copolymers, are useful nanocarriers for the systemic delivery of drugs and genes. Recently, novel polymeric micelles with various functions such as the targetability and stimuli-sensitivity have been emerged as promising carriers that enhance the efficacy of drugs and genes with minimal side effects. This presentation focuses our recent approach to the preparation of functional block copolymers that are useful for constructing smart micellar delivery systems in advanced therapeutics, including chemo-gene therapy. Particular emphasis is placed on the characteristic behaviors of intracellular environment-sensitive micelles that selectively exert drug activity and gene expression in live cells.

  • PDF

Preparation and Characterizations of Poly(ethylene glycol)-Poly(ε-caprolactone) Block Copolymer Nanoparticles

  • Choi, Chang-Yong;Chae, Su-Young;Kim, Tai-Hyoung;Jang, Mi-Kyeong;Cho, Chong-Su;Nah, Jae-Woon
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권4호
    • /
    • pp.523-528
    • /
    • 2005
  • Diblock copolymers with different poly($\varepsilon$-caprolactone) (PCL) block lengths were synthesized by ringopening polymerization of $\varepsilon$-caprolactone in the presence of monomethoxy poly(ethylene glycol) (mPEG-OH, MW 2000) as initiator. The self-aggregation behaviors of the diblock copolymer nanoparticle, prepared by the diafiltration method, were investigated by using $^1H$ NMR, dynamic light scattering (DLS), and fluorescence spectroscopy. The PEG-PCL block copolymers formed the nano-sized self-aggregate in an aqueous environment by intrsa- and/or intermolecular association between hydrophobic PCL chains. The critical aggregation concentrations (cac) of the block copolymer self-aggregate became lower with increasing hydrophobic PCL block length. On the other hand, reverse trends of mean hydrodynamic diameters were measured by DLS owing to the increasing bulkiness of the hydrophobic chains and hydrophobic interaction between the PCL microdomains. The hydrodynamic diameters of the block copolymer nanoparticles, measured by DLS, were in the range of 65-270 nm. Furthermore, the size of the nanoparticles was scarcely affected by the concentration of the block copolymers in the range of 0.125-5 mg/mL owing to the negligible interparticular aggregation between the self-aggregated nanoparticles. Considered with the fairly low cac and nanoparticle stability, the PEG-PCL nanoparticles can be considered a potential candidate for biomedical applications such as drug carrier or imaging agent.

블록 공중합체 3차원 패턴의 제조 방법 및 그 구조 특성 (Fabrication of Free-Standing Three-Dimensional Block Copolymer Patterns on Substrate)

  • 최홍균
    • 한국재료학회지
    • /
    • 제29권12호
    • /
    • pp.804-811
    • /
    • 2019
  • As the importance of three-dimensiona (3D) nano patterns and structures has recently emerged, interest in the study of 3D structures of block copolymers has increased. However, most existing studies on block copolymer 3D patterns on substrates are limited to simple 3D structures such as a multi-layered forms. In this study, we propose an experimental method for realizing free-standing 3D block copolymer patterns on substrates using an e-beam lithographic template and film transfer method. The block copolymer 3D structure formed in wide hole templates are similar to simple multi-layered structures; however, as the width of the hole template become narrower, more complex block copolymer 3D structures are formed in which the upper and lower layer structures are interconnected. Furthermore, we introduce a method to fabricate novel block copolymer structures in which the 2D planar structures are connected to 3D complex structures. Proposed 3D block copolymer fabrication method provides a framework for generation of unconventional 3D structures of block copolymer, which can be useful for next generation 3D devices.

Novel pH/Temperature Sensitive Hydrogels of Poly (ethylene glycol)-Poly (caprolactone) -Poly (${\beta}-amino\;ester$) (PAE-PCLA-PEGPCLA-PAE) Biodegradable Polyester Block Copolymer

  • Huynh Dai Phu;Lee Doo-Sung
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.263-263
    • /
    • 2006
  • Poly (ethylene glycol)(PEG) - Poly (${\varepsilon}-caprolactone(CL)$) - Poly (D,L lactide(LA) (PCLA-PEG-PCLA) was synthesized by ring-opening polymerization to form temperature sensitive hydrogel triblock copolymer. The triblock copolymer was acrylated by acryloyl chloride. ${\beta}-amino$ ester was used as a pH sensitive moiety, in this study ${\beta}$- amino ester obtained from 1,4-butandiol diacrylate, and 4, 4' trimethylene dipiperidine, it have pKb around 6.6. pH/temperature sensitive penta-block copolymer (PAE-PCL-PEG-PCL-PAE) was synthesized by addition polymerization from acrylated triblock copolymer, 1,4-butandiol diacrylate, and 4, 4' trimethylene dipiperidine. Their physicochemical properties of triblock and penta-block copolymers were characterized by $^1H-NMR$ spectroscopy and gel permeation spectroscopy. Sol-gel phase transition behavior of PAE-PCL-PEG-PCL-PAE block copolymers were investigated by remains stable method. Aqueous media of the penta-block copolymer (at 20 wt%) changed from a sol phase at pH 6.4 and $10^{\circ}C$ to a gel phase at pH 7.4 and $37^{\circ}C$. The sol-gel transition properties of these block copolymers are influenced by the hydrophobic/hydrophilic balance of the copolymers, block length, hydrophobicity, stereo-regularity of the hydrophobic of the block copolymer, and the ionization of the pH function groups in the copolymer depended on the changing of environmental pH, respectively. The degradation and the stabilization at pH 7.4 and $37^{\circ}C$, and the stabilization at pH 6.4 and $10^{\circ}C,\;5^{\circ}C,\;0^{\circ}C$, of the gel were determined. The results of toxicity experiment show that the penta block copolymer can be used for injection drug delivery system. The sol?gel transition of this block copolymer also study by in vitro test ($200{\mu}l$ aqueous solution at 20wt% polymer was injected to mouse). Insulin loading and releasing by in vitro test was investigated, the results showed that insulin can loading easily into polymer matrix and release time is around 14-16days. The PAE-PCL-PEG-PCL-PAE can be used as biomaterial for drug, protein, gene loading and delivery.

  • PDF

Precise Synthesis of Dendron-Like Hyperbranched Polymers and Block Copolymers by an Iterative Approach Involving Living Anionic Polymerization, Coupling Reaction, and Transformation Reaction

  • Hirao Akira;Tsunoda Yuji;Matsuo Akira;Sugiyama Kenji;Watanabe Takumi
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.272-286
    • /
    • 2006
  • Dendritic hyperbranched poly(methyl methacrylate)s (PMMA)s, whose branched architectures resemble the 'dendron' part(s) of dendrimer, were synthesized by an iterative methodology consisting of two reactions in each iteration process: (a) a coupling reaction of u-functionalized, living, anionic PMMA having two tert-butyldimethylsilyloxymethylphenyl(SMP) groups with benzyl bromide(BnBr)-chain-end-functionalized PMMA, and (b) a transformation reaction of the introduced SMP groups into BnBr functionalities. These two reactions, (a) and (b), were repeated three times to afford a series of dendron-like, hyperbranched (PMMA)s up to third generation. Three dendron-like, hyperbranched (PMMA)s different in branched architecture were also synthesized by the same iterative methodology using a low molecular weight, functionalized 1,1-diphenylalkyl anion prepared from sec-BuLi and 1,1-bis(3-tert-butyldime-thylsilyloxymethylphenyl)ethylene in the reaction step (b) in each iterative process. Furthermore, structurally similar, dendron-like, hyperbranched block copolymers could be successfully synthesized by the iterative methodology using $\alpha$-functionalized, living, anionic poly(2-(perfluorobutyl) ethyl methacrylate) (PRfMA) in addition to $\alpha$-functionalized, living PMMA. Accordingly, the resulting block copolymers were comprised of both PMMA and PRfMA segments with different sequential orders. After the block copolymers were cast into films and annealed, their surface structures were characterized by angle-dependent XPS and contact angle measurements. All three samples showed significant segregation and enrichment of PRfMA segments at the surfaces.

Synthesis and Characterization of Alternating Block Copolycarbonates Containing Constituent Groups of Polysulfone

  • Lee, Jung-Ah;Yoo, Seung-Hoo;Jho, Jae-Young;Lee, Jong-Chan
    • Macromolecular Research
    • /
    • 제11권6호
    • /
    • pp.437-443
    • /
    • 2003
  • A series of alternating and alternating block copolycarbonates containing the constituent groups of polysulfone was synthesized through a multi-step solution condensation method. For the regulation of block length, monodisperse oligomers were prepared by using a large excess of the bisphenols and were subsequently incorporated into the copolymer chains. Separating the unreacted bisphenols from the oligomers by dissolution/precipitation steps took advantage of solubility differences. The structures of the monomers, oligomers, and copolymers were characterized and confirmed by GPC, NMR spectroscopy, mass spectrometry, and elemental analysis. Monodispersity of the oligomers, which is critical for control over the block length in the copolymers, was confirmed by GPC and mass spectrometry. Of the two constituent groups of the polysulfone, the sulfone linkage stiffens the polycarbonate copolymer chain, while the ether linkage softens it.

Synthesis of Well Defined Sulfonated Block Copolymers by Atom Transfer Radical Polymerization

  • Baek Kyung-Youl;Balsara Nitash P.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.332-332
    • /
    • 2006
  • Well difined sulfonated styrene and n-butyl acrylate (nBA) block copolymers were synthesized by CuBr catalyzed living radical polymerization followed by acification by thermolysis. Neopentyl styrene sulfonate (NSS) was polymerized with PnBA macroinitator precursor ($M_{n}=19,500,\;PDI\;<\;1.09$) and CuBr catalyst with N,N,N',N' -pentamethylethyleneamine (PMDETA) to give nBA-NSS block copolymer with narrow polydispersity ($M_{n}=29,900,\;PDI\;<\;1.15$). PNSS segments in the block copolymer were then acidified by thermolysis at $150^{\circ}C$ resulting in polystyrene segments with 100 % sulfonic acid groups.

  • PDF

Poly(L-leucine)/poly(ethylene oxide)/poly(L-leucine) triblock copolymers as wound dressing

  • 조종수;김현정;이현철;김성호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.327-330
    • /
    • 1996
  • Poly(L-leucine)(PLL)/poly(ethylene oxide)(PEO)/poly (L-leucine)(PLL) block copolymers were synthsized by polymerization of L-leucine N-carboxyanhydride with diamine-terminated PEO for possibility of wound dressing which may have several advantages such as 1) increase of solubility, 2) control of biodegradation, 3) absorption of body fluid. 4) non-immunogenic effect than PLL homopolymer wound dressing aleady commercialized. Water content increased with an increase of PEO content in the block copolymer due to the hydrophilicity of PEO. Release of silver sulfadiazine(AgSD) from AgSD loaded wound dressing increased with an increase of PEO content in the block copolymer. It was found that the number of Pseudomonas aeruginosa decrease with an increase of PEO content due to the fast release of antibacterial agents with an increase of PEO content in the block copolymer.

  • PDF