Synthesis and Characterization of Alternating Block Copolycarbonates Containing Constituent Groups of Polysulfone

  • Lee, Jung-Ah (Hyperstructured Organic Materials Research Center and School of Chemical Engineering, Seoul National University) ;
  • Yoo, Seung-Hoo (Hyperstructured Organic Materials Research Center and School of Chemical Engineering, Seoul National University) ;
  • Jho, Jae-Young (Hyperstructured Organic Materials Research Center and School of Chemical Engineering, Seoul National University) ;
  • Lee, Jong-Chan (Hyperstructured Organic Materials Research Center and School of Chemical Engineering, Seoul National University)
  • Published : 2003.12.01

Abstract

A series of alternating and alternating block copolycarbonates containing the constituent groups of polysulfone was synthesized through a multi-step solution condensation method. For the regulation of block length, monodisperse oligomers were prepared by using a large excess of the bisphenols and were subsequently incorporated into the copolymer chains. Separating the unreacted bisphenols from the oligomers by dissolution/precipitation steps took advantage of solubility differences. The structures of the monomers, oligomers, and copolymers were characterized and confirmed by GPC, NMR spectroscopy, mass spectrometry, and elemental analysis. Monodispersity of the oligomers, which is critical for control over the block length in the copolymers, was confirmed by GPC and mass spectrometry. Of the two constituent groups of the polysulfone, the sulfone linkage stiffens the polycarbonate copolymer chain, while the ether linkage softens it.

Keywords

References

  1. Macromolecules v.14 A.F.Yee;S.A.Smith https://doi.org/10.1021/ma50002a009
  2. Macromolecules v.27 C.Xiao;J.Y.Jho;A.F.Yee https://doi.org/10.1021/ma00088a017
  3. Macromolecules v.28 C.J.G.Plummer;C.L.Soles;C.Xiao;J.Wu;H.H.Kausch;A.F.Yee https://doi.org/10.1021/ma00125a018
  4. J. Polym. Sci., Part B: Polym. Phys. v.39 J.Wu;C.Xiao;A.F.Yee;C.A.Klug;J.Schaefer https://doi.org/10.1002/polb.1146
  5. Macromolecules v.25 C.L.Aitken;W.J.Koros;D.R.Paul https://doi.org/10.1021/ma00039a018
  6. Macromolecules v.25 C.L.Aitken;W.J.Koros;D.R.Paul https://doi.org/10.1021/ma00040a008
  7. Macromolecules v.34 I.W.Kim;K.J.Lee;J.Y.Jho;H.C.Park;J.Won;Y.S.Kang;M.D.Guiver;G.P.Roberson;Y.Dai https://doi.org/10.1021/ma002022b
  8. Macromolecules v.29 K.Ghosal;R.T.Chern;B.D.Freeman;W.H.Daly;I.I.Negulescu https://doi.org/10.1021/ma951310i
  9. Macromol. Res. v.10 J.H.Kim;J.E.Yoo;C.K.Kim https://doi.org/10.1007/BF03218307
  10. J. Ind. Eng. Chem. v.5 B.U.Kang;J.A.Lee;J.Y.Jho
  11. Interfacial Synthesis v.2 H.Vernaleken;F.Millich(ed.);C.E.Caraher,Jr.(ed.)
  12. Korea Polym. J. v.2 B.G.Kim;M.S.Gong;J.H.Kim
  13. Korea Polym. J. v.8 S.W.Lee;W.Huh;Y.S.Hong;K.M.Lee
  14. Macromolecules v.24 J.Y.Jho;A.F.Yee https://doi.org/10.1021/ma00007a022
  15. Macromolecules v.31 J.Liu;A.F.Yee https://doi.org/10.1021/ma980370w
  16. J. Polym. Sci., Part B: Polym. Phys. v.39 J.Wu;C.Xiao;A.F.Yee;C.A.Klug;J.Schaefer https://doi.org/10.1002/polb.1146
  17. Macromolecules v.25 C.Xiao;A.F.Yee https://doi.org/10.1021/ma00051a012
  18. Macromolecules v.30 C.A.Klug;J.Wu;C.Xiao;A.F.Yee;J.Schaefer https://doi.org/10.1021/ma970630u