Browse > Article

Precise Synthesis of Dendron-Like Hyperbranched Polymers and Block Copolymers by an Iterative Approach Involving Living Anionic Polymerization, Coupling Reaction, and Transformation Reaction  

Hirao Akira (Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology)
Tsunoda Yuji (Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology)
Matsuo Akira (Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology)
Sugiyama Kenji (Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology)
Watanabe Takumi (Polymeric and Organic Materials Department, Graduate School of Science and Engineering, Tokyo Institute of Technology)
Publication Information
Macromolecular Research / v.14, no.3, 2006 , pp. 272-286 More about this Journal
Abstract
Dendritic hyperbranched poly(methyl methacrylate)s (PMMA)s, whose branched architectures resemble the 'dendron' part(s) of dendrimer, were synthesized by an iterative methodology consisting of two reactions in each iteration process: (a) a coupling reaction of u-functionalized, living, anionic PMMA having two tert-butyldimethylsilyloxymethylphenyl(SMP) groups with benzyl bromide(BnBr)-chain-end-functionalized PMMA, and (b) a transformation reaction of the introduced SMP groups into BnBr functionalities. These two reactions, (a) and (b), were repeated three times to afford a series of dendron-like, hyperbranched (PMMA)s up to third generation. Three dendron-like, hyperbranched (PMMA)s different in branched architecture were also synthesized by the same iterative methodology using a low molecular weight, functionalized 1,1-diphenylalkyl anion prepared from sec-BuLi and 1,1-bis(3-tert-butyldime-thylsilyloxymethylphenyl)ethylene in the reaction step (b) in each iterative process. Furthermore, structurally similar, dendron-like, hyperbranched block copolymers could be successfully synthesized by the iterative methodology using $\alpha$-functionalized, living, anionic poly(2-(perfluorobutyl) ethyl methacrylate) (PRfMA) in addition to $\alpha$-functionalized, living PMMA. Accordingly, the resulting block copolymers were comprised of both PMMA and PRfMA segments with different sequential orders. After the block copolymers were cast into films and annealed, their surface structures were characterized by angle-dependent XPS and contact angle measurements. All three samples showed significant segregation and enrichment of PRfMA segments at the surfaces.
Keywords
dendron-like hyperbranched polymer; living anionic polymerization; successive synthesis; fluoropolymer; surface structure;
Citations & Related Records

Times Cited By Web Of Science : 24  (Related Records In Web of Science)
Times Cited By SCOPUS : 21
연도 인용수 순위
1 M. Trollsas, and J. L. Hedrick, J. Am. Chem. Soc., 120, 4644 (1998)   DOI   ScienceOn
2 M. Trollsas, M. A. Kelly, H. Claesson, R. Siemens, and J. L. Hedrick, Macromolecules, 32, 4917 (1999)   DOI   ScienceOn
3 S. Angot, D. Taton, and Y. Gnanou, Macromolecules, 33, 5418 (2000)   DOI   ScienceOn
4 A. Matsuo, T. Watanabe, and A. Hirao, Macromolecules, 37, 6283 (2004)   DOI   ScienceOn
5 L. Leemans, R. Fayt, and Ph. Teyssié, J. Polym. Sci.; Part A: Polym. Chem., 28, 2187 (1990)   DOI
6 H, Ozaki, A, Hirao, and S. Nakahama, Macromolecules, 25, 1391 (1992)   DOI
7 M. Yamada, T. Itoh, R. Nakagawa, A. Hirao, S. Nakahama, and J. Watanabe, Macromolecules, 32, 282 (1999)   DOI   ScienceOn
8 S. Han, M. Hagiwara, and T. Ishizone, Macromolecules, 36, 8312 (2003)   DOI   ScienceOn
9 H. Sawada, Y. Yoshino, Y. Ikematsu, and T. Kawase, Eur. Polym. J., 36, 231 (2000)   DOI   ScienceOn
10 A. Hirao, S. Sakai, and K. Sugiyama, Polym. Adv. Technol., 15, 15 (2004)   DOI   ScienceOn
11 K. Sugiyama, S. Sakai, A. El-Shehawy, and A. Hirao, Macromol. Symp., 217, 1 (2004)
12 A. Hirao and M. Hayashi, Macromolecules, 32, 6450 (1999)   DOI   ScienceOn
13 T. Ishizone, T. Tominaga, K. Kitamura, A. Hirao, and S. Nakahama, Macromolecules, 28, 4829 (1995)   DOI   ScienceOn
14 K. Sugiyama, H. Azuma, T. Watanabe, T. Ishizone, and A. Hirao, Polymer, 44, 4157 (2003)   DOI   ScienceOn
15 Y. Tanaka, H. Hasegawa, T. Hashimoto, A. Ribbe, K. Sugiyama, A. Hirao, and S. Nakahama, Polym. J., 31, 989 (1999)   DOI   ScienceOn
16 J. L. Hedrick, M. Trollsas, C. J. Hawker, B. Atthoff, H. Claesson, A. Heise, R. D. Miller, D. Mecerreyes, R. Jerome, and Ph. Dubois, Macromolecules, 31, 8691 (1998)   DOI   ScienceOn
17 S. Affrossman, P. Bertrand, M. Hartahorne, T. Kiff, D. Leonard, R. A. Pethtick, and R. W. Richards, Macromolecules, 29, 5432 (1996)   DOI   ScienceOn
18 A. Würsch, M. Möller, T. Glauser, L. S. Lim, S. B. Voytek, J. L. Hedrick, C. W. Frank, and J. G. Hilborn, Macromolecules, 34, 6601 (2001)   DOI   ScienceOn
19 M. Trollsas, H. Claesson, B. Atthoff, and J. L. Hedrick, Angew. Chem. Int. Ed., 37, 3132 (1998)   DOI   ScienceOn
20 C. M. Stancik, J. A. Pople, M. Trollsas, P. Lindner, J. L. Hedrick, and A. P. Gast, Macromolecules, 36, 5765 (2003)   DOI   ScienceOn
21 T. Ishizone, S. Han, S. Okumura, and S. Nakahama, Macromolecules, 36, 42 (2003)   DOI   ScienceOn
22 J. Genzer, E. Sivaniah, E. J. Kramer, J. Wang, H. Korner, K. Char, C. K. Ober, B. M. DeKoven, R. A. Bubeck, D. A. Fischer, and S. Sambasivan, Langmuir, 16, 1993 (2000)   DOI   ScienceOn
23 M. Trollsas, B. Atthoff, A. Würsch, J. L. Hedrick, J. A. Pople, and A. P. Gast, Macromolecules, 33, 6423 (2000)   DOI   ScienceOn
24 A. Hirao and N. Haraguchi, Macromolecules, 35, 7224 (2002)   DOI   ScienceOn
25 J. Genzer, E. Sivaniah, E. J. Kramer, J. Wang, H. Körner, M. Xiang, K. Char, C. K. Ober, B. M. DeKoven, R. A. Bubeck, M. K. Chaudhury, S. Sambasivan, and D. A. Fischer, Macromolecules, 33, 1882 (2000)   DOI   ScienceOn
26 Y. Gnanou and D. Taton, Macromol. Symp., 174, 333 (2001)
27 T. Hayakawa, J. Wang, M. Xiang, X. Li, M. Ueda, C. K. Ober, J. Genzer, E. Sivaniah, E. J. Kramer, and D. A. Fischer, Macromolecules, 33, 8012 (2000)   DOI   ScienceOn
28 S. Hou, E. L. Chaikof, D. Taton, and Y. Gnanou, Macromolecules, 36, 3874 (2003)   DOI   ScienceOn
29 S. Hou, D. Taton, M. Saule, J. Logan, E. L. Chaikof, and Y. Gnanou, Polymer, 44, 5067 (2003)   DOI   ScienceOn
30 H. Zhang, J. Pan, and T. H. Hogen-Esch, Macromolecules, 32, 2815 (1998)
31 T. Ishizone, K. Sugiyama, Y. Sakano, H. Mori, A. Hirao, and S. Nakahama, Polym. J., 31, 983 (1999)   DOI   ScienceOn
32 H. Mori, O. Wakisaka, A. Hirao, and S. Nakahama, Macromol. Chem. Phys, 195, 3213 (1994)   DOI   ScienceOn
33 H. Zhang and E. Ruckenstein, J. Polym. Sci.; Part A: Polym. Chem., 35, 2901 (1997)   DOI   ScienceOn
34 H. Zhang and E. Ruckenstein, Macromolecules, 34, 3587 (2001)   DOI   ScienceOn
35 I. Chalari and N. Hadjichristidis, J. Polym. Sci.; Part A: Polym. Chem., 40, 1519 (2002)   DOI   ScienceOn
36 K. Sugiyama, T. Nemoto, G. Koide, and A. Hirao, Macromol. Symp., 181, 135 (2002)
37 A. Hirao, M. Hayashi, S. Loykulnant, K. Sugiyama, S. W. Ryu, N. Haraguchi, A. Matsuo, and T. Higashihara, Prog. Polym. Sci., 30, 111 (2005)   DOI   ScienceOn
38 A. Hirao and A. Matsuo, Macromolecules, 36, 9742 (2003)   DOI   ScienceOn
39 T. M. Chapman and K. G. Marra, Macromolecules, 28, 2081 (1995)   DOI   ScienceOn
40 D. M. Knauss and T. Huang, Macromolecules, 36, 6036 (2003)   DOI   ScienceOn
41 N. Haraguchi and A. Hirao, Macromolecules, 36, 9364 (2003)   DOI   ScienceOn
42 V. Heroguez, D. Taton, and Y. Gnanou, Polymer News, 26, 150 (2001)
43 T. Ishizone, G. Uehara, A. Hirao, S. Nakahama, and K. Tsuda, Macromol. Chem. Phys., 199, 1827 (1998)   DOI   ScienceOn
44 B. Lepoittevin, R. Matmour, R. Matmour, R. Francis, D. Taton, and Y. Gnanou, Macromolecules, 38, 2130 (2005)
45 A. Hirao, G. Koide, and K. Sugiyama, Macromolecules, 35, 7642 (2002)   DOI   ScienceOn
46 M. Trollsas, B. Atthoff, H. Claesson, and J. L. Hedrick, J. Polym. Sci.; Part A: Polym. Chem., 42, 1174 (2004)   DOI   ScienceOn