• Title/Summary/Keyword: Block cipher algorithm

Search Result 196, Processing Time 0.023 seconds

Analysis of Grover Attack Cost and Post-Quantum Security Strength Evaluation for Lightweight Cipher SPARKLE SCHWAEMM (경량암호 SPARKLE SCHWAEMM에 대한 Grover 공격 비용 분석 및 양자 후 보안 강도 평가)

  • Yang, Yu Jin;Jang, Kyung Bae;Kim, Hyun Ji;Song, Gyung Ju;Lim, Se Jin;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.12
    • /
    • pp.453-460
    • /
    • 2022
  • As high-performance quantum computers are expected to be developed, studies are being actively conducted to build a post-quantum security system that is safe from potential quantum computer attacks. When the Grover's algorithm, a representative quantum algorithm, is used to search for a secret key in a symmetric key cryptography, there may be a safety problem in that the security strength of the cipher is reduced to the square root. NIST presents the post-quantum security strength estimated based on the cost of the Grover's algorithm required for an attack of the cryptographic algorithm as a post-quantum security requirement for symmetric key cryptography. The estimated cost of Grover's algorithm for the attack of symmetric key cryptography is determined by the quantum circuit complexity of the corresponding encryption algorithm. In this paper, the quantum circuit of the SCHWAEMM algorithm, AEAD family of SPARKLE, which was a finalist in NIST's lightweight cryptography competition, is efficiently implemented, and the quantum cost to apply the Grover's algorithm is analyzed. At this time, the cost according to the CDKM ripple-carry adder and the unbounded Fan-Out adder is compared together. Finally, we evaluate the post-quantum security strength of the lightweight cryptography SPARKLE SCHWAEMM algorithm based on the analyzed cost and NIST's post-quantum security requirements. A quantum programming tool, ProjectQ, is used to implement the quantum circuit and analyze its cost.

A Fast Algorithm for evaluating the Security of Substitution and Permutation Networks against Differential attack and Linear attack (SPN구조 블록 암호의 차분 공격 및 선형 공격에 대한 안전성을 측정하는 고속 알고리즘)

  • 박상우;지성택;박춘식;성수학
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.3
    • /
    • pp.45-52
    • /
    • 2001
  • In this paper, we examine the method for evaluating the security of SPN structures against differential cryptanalysis and linear cryptanalysis. We present an example of SPN structures in which there is a considerable difference between the differential probabilities and the characteristic probabilities. Then we 7pose an algorithm for estimating the maximum differential probabilities and the maximum linear hull probabilities of SPN structures and an useful method for accelerating the proposed algorithm. By using this method, we obain the maximum differential probabilities and the maximum linear probabilities of round function F of block cipher E2.

Design of a Cryptographic Processor Dedicated to VPN (VPN에 특화된 암호가속 칩의 설계 및 제작)

  • Lee, Wan-Bok;Roh, Chang-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.852-855
    • /
    • 2005
  • This paper introduces a case study of designing a cryptographic processor dedicated to VPN/SSL system. The designed processor supports not only block cipher algorithm, including 3DES, AES, and SEED, but also 163 bit ECC public key crypto algorithm. Moreover, we adopted PCI Master interface in the design, which guarantees fast computation of cryptographic algorithm prevalent in general information security systems.

  • PDF

An analysis on the security of the 3GPP MAC algorithm (3GPP MAC 알고리즘 안전성 분석)

  • 홍도원;신상욱;강주성;이옥연
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.11 no.2
    • /
    • pp.59-65
    • /
    • 2001
  • 3GPP proposed a variant CBC-MAC based on the block cipher KASUMI to provide the data integrity over a radio access link. We have studied deeply the Knudsen and Mitchell\`s attack. In this paper we proposed a definite performing algorithm of the Knudsen and Mitchell\`s alack and compute the success probability and complexity of that algorithm. Moreover We also analyze a security of 3GPP-MAC comparing with the original CBC-MAC.

Side Channel Attacks on HIGHT and Its Countermeasures (HIGHT에 대한 부채널 분석 및 대응 방법)

  • Kim, Tae-Jong;Won, Yoo-Seung;Park, Jin-Hak;An, Hyun-Jin;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.457-465
    • /
    • 2015
  • Internet of Things(IoT) technologies should be able to communication with various embedded platforms. We will need to select an appropriate cryptographic algorithm in various embedded environments because we should consider security elements in IoT communications. Therefore the lightweight block cryptographic algorithm is essential for secure communication between these kinds of embedded platforms. However, the lightweight block cryptographic algorithm has a vulnerability which can be leaked in side channel analysis. Thus we also have to consider side channel countermeasure. In this paper, we will propose the scenario of side channel analysis and confirm the vulnerability for HIGHT algorithm which is composed of ARX structure. Additionally, we will suggest countermeasure for HIGHT against side channel analysis. Finally, we will explain how much the effectiveness can be provided through comparison between countermeasure for AES and HIGHT.

A Spread Random Interleaver based Efficient DES Algorithm for Personal Cloud Computing Environments (개인 클라우드 컴퓨팅 환경을 위한 스프레드 랜덤 인터리버 기반의 효율적인 DES 알고리즘)

  • Chung, Yeon Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.41-48
    • /
    • 2013
  • An efficient encryption algorithm based on the Data Encryption Standard (DES) for personal cloud computing environments is presented. The proposed algorithm improves data privacy, security and also encryption speed, compared with the triple DES. The improvement of the proposed algorithm stems from enhanced privacy inherent from the use of spread random interleaver in the place of the known substitution table for initial and final permutations in the DES algorithm. The simulation results demonstrate that the interleaver based DES (I-DES) is found to run faster than the triple DES algorithm and also offer improved security. The proposed algorithm also offers encryption for variable-length data using the Cipher Block Chaining (CBC).

A Hardware Architecture of SEED Algorithm with 320 Mbps (320 Mbps SEED 알고리즘의 하드웨어 구조)

  • Lee Haeng-Woo;Ra Yoo-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.291-297
    • /
    • 2006
  • This paper describes the architecture for reducing its size and increasing the computation rate in implementing the SEED algorithm of a 128-bit block cipher, and the result of the circuit design. In order to increase the computation rate, it is used the architecture of the pipelined systolic array. This architecture is a simple thing without involving any buffer at the input and output part. By this circuit, it can be recorded 320 Mbps encryption rate at 10 MHz clock. We designed the circuits with goals of the high-speed computations and the simplified structures.

Development of Education Learning Program for AES Cryptography Algorithm (AES 암호 알고리즘 교육용 학습 프로그램 개발)

  • Lee, Dong-Bum;Jeong, Myeong-Soo;Kwak, Jin
    • The Journal of Korean Association of Computer Education
    • /
    • v.14 no.4
    • /
    • pp.53-61
    • /
    • 2011
  • Recently, the importance of information security is emphasized in IT related field. The agency related to information security implements the policies to emphasize the security and protection of the privacy. However, the issue in many companies and users is that awareness of security is still poor. Therefore, in this paper, we develope the learning program for AES(advanced encryption standard) block cipher, to raise the awareness of security. Also, wish to cause interest about AES cipher because user confirms process that is encryption/decryption through program of this paper directly and prove awareness about information security.

  • PDF

Differential Fault Attack on SSB Cipher (SSB 암호 알고리즘에 대한 차분 오류 공격)

  • Kang, HyungChul;Lee, Changhoon
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.48-52
    • /
    • 2015
  • In this paper, we propose a differential fault analysis on SSB having same structure in encryption and decryption proposed in 2011. The target algorithm was designed using advanced encryption standard and has advantage about hardware implementations. The differential fault analysis is one of side channel attacks, combination of the fault injection attacks with the differential cryptanalysis. Because SSB is suitable for hardware, it must be secure for the differential fault analysis. However, using proposed differential fault attack in this paper, we can recover the 128 bit secret key of SSB through only one random byte fault injection and an exhausted search of $2^8$. This is the first cryptanalytic result on SSB having same structure in encryption and decryption.

A Study on Hardware Implementation of 128-bit LEA Encryption Block (128비트 LEA 암호화 블록 하드웨어 구현 연구)

  • Yoon, Gi Ha;Park, Seong Mo
    • Smart Media Journal
    • /
    • v.4 no.4
    • /
    • pp.39-46
    • /
    • 2015
  • This paper describes hardware implementation of the encryption block of the '128 bit block cipher LEA' among various lightweight encryption algorithms for IoT (Internet of Things) security. Round function blocks and key-schedule blocks are designed by parallel circuits for high throughput. The encryption blocks support secret-key of 128 bits, and are designed by FSM method and 24/n stage(n=1, 2, 3, 4, 8, 12) pipeline methods. The LEA-128 encryption blocks are modeled using Verilog-HDL and implemented on FPGA, and according to the synthesis results, minimum area and maximum throughput are provided.