This study was conducted to evaluate the grit removal efficiency of tornado block-type vortex grit separator. Vortex grit separator was manufactured for this study, and it was characterized by the impeller and tornado block installed in separator. Impeller was installed to increase water velocity in the separator and tornado block was installed to increase the grit lifting efficiency. Pilot study was also conducted in A sewage treatment plant (STP) in Gyeonggi province from November 2003 to May 2004 (64 days). Major findings are as follows. 1. Impeller was proven to increase water velocity in the grit separator, especially in low flow rate. This influence will increase separation ratio of organics from grits, preventing those organics from sedimentation. 2. Sand (with 0.2~0.3mm size) removal efficiency was over 98 % and 96 %, at the flow rate of $500m^3/day$ and $750m^3/day$ under the condition that impeller rotation velocity kept at 15 rpm. Originally that grit separator was designed to have the capacity of $500m^3/day$. $750m^3/day$ was tried to investigate the performance of this type of grit separator under overload condition. Stable grit removal was still available to the extent of 150% of designed capacity. 3. It took less than 3 minutes for the grit separator to completely lift out 3 kgs of 0.2-0.3 mm sized, settled sand at the bottom to 2,060 mm high above water surface. But it showed the tendency to spend a little more time on lifting the grit as the grit size and the vertical height of the lift increased. 4. During experimental duration in A STP, it was found that the average amount of inlet grit was about 981 g/day (160~1,685 g/day) under $500m^3/day$ of operation condition, but it varied so severely during the experimental duration. After classification of discharged grit according to its size, grit with 0.3-0.42 mm size was found as largest part of output.
4차 산업혁명 시대가 도래하면서 인공지능에 대한 교육이 활발하게 진행되고 있다. 그러나 기존의 강의식 교육은 지식의 전달을 목적으로 두고 있어 인공지능 분야에서 요구하는 능동적인 문제해결 능력과 인공지능 활용능력을 기르는 데 어려움을 겪는다. 본 논문에서는 이를 해결하기 위해 학습자가 제시된 문제를 해결하는 과정에서 학습이 이루어지는 문제 중심학습 기반 교육 방안을 제안한다. 학습자들에게 제공되는 문제는 완성된 하나의 프로젝트이다. 이 프로젝트는 3가지 종류로 구성된다. 분류 모델, 분류 모델의 학습 데이터, 분류된 결과에 따라 실행될 블록 코드. 해당 프로젝트는 동작은 하지만 각각의 구성요소들이 낮은 동작 수준을 보이도록 설계되어 있다. 이를 해결하기 위해 학습자들은 테스팅을 통해 프로젝트의 문제점을 찾고 토론을 통해 해결책을 찾아 좀 더 높은 동작 수준으로 개선하는 과정을 거치며 컴퓨팅 사고력 향상을 기대할 수 있다.
In this paper, We introduce electrical tracking generated from surface activity associated with flow of leakage current on insulator under wet and contaminated conditions and design electrical tracking pattern recognition system by using LabVIEW. We measure the leaking current of contaminated wire by using LabVIEW software and the NI-c-DAQ 9172 and NI-9239 hardware. As pattern recognition algorithm and optimization algorithm for electrical tracking system, neural networks, Radial Basis Function Neural Networks(RBFNNs) and particle swarm optimization are exploited. The designed electrical tracking recognition system consists of two parts such as the hardware part of electrical tracking generator, the NI-c-DAQ 9172 and NI-9239 hardware and the software part of LabVIEW block diagram, LabVIEW front panel and pattern recognition-related application software. The electrical tracking system decides whether electrical tracking generate or not on electrical wire.
In this paper, we present new scheme for image coding which efficiently use the relationship between the properties of spatial image and its wavelet transform. Firstly an original image is decomposed into several layers by the wavelet transform, and simultaneously decomposed into 2$\^$n/ ${\times}$ 2$\^$n/ blocks. Each block is classified into 3 regions according to their property, i.e., low activity region(LAR), midrange activity region(MAR), high activity region(HAR). Secondly we are applied texture modeling technique to LAR, MAR and HAR are encoded by Stack-Run coding technique. Finally our scheme Is superior to the Zerotree method in both reconstructed image Quality and transmitted bit rates.
본 논문에서는 영상 내 존재하는 의미 있는 객체단위로 초상권을 보호하는 기법을 제안한다. 제안된 방법은 초상권 보호 객체선택 단계와 객체에 마스크를 적용하는 단계 그리고 마스크가 적용된 객체를 추적하는 단계로 나누어진다. 초상권 보호 객체선택 단계에서는 블록분류(block classification) 및 워터쉐드(watershed) 알고리듬을 이용하여 분할된 결과영상을 얻고 이를 이용하여 사용자가 원하는 객체를 마우스로 클릭함으로써 손쉽게 초상권 보호법을 적용시킬 객체를 추출할 수 있다. 이렇게 정의된 객체는 다음 단계에서 마스크를 적용 받게 된다. 첫 번째 프레임에서 마스크가 적용되면 다음 프레임부터는 객체추적과정에서 연된 화면사이의 움직임 및 밝기정보에 의해 객체를 추적, 계속 마스크를 적용함으로써 초상권을 보호할 수 있다. 제안된 알고리듬은 초상권 보호를 위한 모자이크 처리 시 화질 저하에 따른 시청자의 화면 거부감을 최소화시키고, 반자동영상분할 알고리듬을 사용하여 객체 단위로 초상권 마스크를 적용하여 초상권 보호대상물을 놓치지 않고 추적할 수 있어 신뢰도를 높일 수 있는 장점을 가지고 있다.
본 논문에서는 다중 지역 이진 패턴(Multi-scale Bock LBP, MB-LBP) 특징과 랜덤 포레스트에 기반한 새로운 기법의 머리 방향 분류 기법을 제안한다. 제안 기법에서는 occlusion 과 조명의 변화에 강인한 분류 정확도를 얻기 위해서 랜덤화된 트리를 학습하는 것을 목표로 한다. 우선, 얼굴 이미지로부터 많은 MB-LBP 특징을 추출하고, 얼굴 영상들을 랜덤하게 입력하고 MB-LBP 크기 파라미터와 같은 랜덤 특징과 블록 좌표들을 사용하여 트리를 생성한다. 게다가 각 노드에서 정보 이득을 최대화 하는 트리의 내부 노드를 생성하기 위해서 uniform LBP 의 특성을 고려한 분할 함수를 개발한다. 랜덤화된 트리는 랜덤 포레스트에 포함되어 있으며 마지막 결정단계에서 Maximum-A-Posteriori criterion 으로 최종 결정을 한다. 실험 결과는 제안 기법이 다양한 조명, 자세, 표현, occlusion 상황에서 기존의 방법보다 개선된 성능으로 머리 방향을 분류 할 수 있음을 보여준다.
This paper presents an adaptive interpolation filtering scheme for the High Efficiency Video Coding (HEVC) standard. In regards to interpolation for motion estimation and compensation, the conventional HEVC employs 8-tap and 4-tap filters for luma and chroma samples, respectively. Coefficients in such filters are determined by discrete cosine transform (DCT). In the proposed scheme, boundary strength values are stored after the execution of the deblocking filter. For each block, the sum of boundary strength values is calculated to indicate whether its region is complex or simple. Consequently, based on the region classification, 12-tap and 8-tap interpolation filters are used for complex and simple regions, respectively. This process is applied to luma sample interpolation only. Simulation results show 1.8% average BD-rate reduction compared to the conventional method.
Recently, it Is required to develop OCR(Optical Character Reader) along with the progress of the information processing system for Hangeul. Characters have to be recognized clearly so that OCR can be applied, Structure analysis method and lump method are used for the recognition of characters, and OCR is now available for the recognition of printed characters and handwritten alphanumeric characters having simple structure by them However, It is known that there should be much more study on the development of handwritten Hangout's OCR. This paper proposed a new method for the handwritten Hangout character recognition. The units of Initial consonant of Hangout are separated and then recognized from the utilization of the position- Information of Hangeul's units from the normalized patterns using the regression line theory. It is carried out for the extraction of the block which exists in the virtual Initial consonant region from the normalized input patterns and the calculation on maximum value (${\beta}$) of likelihood after comparing the features of separated subpattern with the initial consonant dictionary.
Dependent models in quality statistics are classified as serially autocorrelated model, multivariate model and dependent sample model. Dependent sample model is most efficient in time and cost to obtain samples among the above models. This paper proposes to implement parametric and nonparametric models into production system depended on demand pattern. Nonparametric models have distribution free and asymptotic distribution free techniques. Quality statistical models are classified into two categories ; the number of dependent sample and the type of data. The type of data consists of nominal, ordinal, interval and ratio data. The number of dependent sample divides into 2 samples and more than 3 samples.
본 논문에서는 독립성분분석(Independent Component Analysis, 이하 ICA)기법과 median에서의 GBD 알고리즘을 이용한 영상 분류 방법을 제안한다. 이 제시된 방법은 영상이 급격히 변화하는 부분의 정보를 잃지 않게 하면서 영상간의 거리를 측정할 수 있었다. 모의 실험 결과로부터 ICA는 K가 7에서 영상간의 상대적 식별이 불가능 하였지만, median에서는 K에 관계없이 영상간의 상대적 식별이 가능함을 모의 실험을 통하여 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.