• Title/Summary/Keyword: Blind Signal Estimation

Search Result 54, Processing Time 0.03 seconds

An all-digial HDTV modem for terrestrial broadcasting (지상 방송용 고선명 텔레비젼을 위한 전 디지탈 모뎀)

  • 한동석;신현수;최양석;송동일
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1777-1786
    • /
    • 1996
  • This paper describes theories and implementation techniques of a digital high-definition television(HDTV) modem based on 32-QAM for terrestrial broadcasting. We proposed a digital demodulation scheme and a symbol timing recovery structure based on the band edge component maximization(BECM) method. The adaptive equalizer has 256 complex taps to remove the multipath of delays ranging from -2.mu.s~+24.mu.s with a new T/2-spaced blind equalization algorithm. computer simulation results reveal that the proposed algorithm outperforms other conventional blind equalization algorithm a digital HDTV modem with 4.91MHz symobol rate is implemented by utilizing the proposed algorithms. All processings for modem operations such as demodulation, estimation of symbol timing phase error, adaptive equalization, and carrier recovery except IF signal processing and sampling phase control part of the AD converter are done in digital domain. Especially, the carrier recovery loop can track a carrier offset of upto .+-.350KHz.

  • PDF

Implementation of Environmental Noise Remover for Speech Signals (배경 잡음을 제거하는 음성 신호 잡음 제거기의 구현)

  • Kim, Seon-Il;Yang, Seong-Ryong
    • 전자공학회논문지 IE
    • /
    • v.49 no.2
    • /
    • pp.24-29
    • /
    • 2012
  • The sounds of exhaust emissions of automobiles are independent sound sources which are nothing to do with voices. We have no information for the sources of voices and exhaust sounds. Accordingly, Independent Component Analysis which is one of the Blind Source Separaton methods was used to segregate two source signals from each mixed signals. Maximum Likelyhood Estimation was applied to the signals came through the stereo microphone to segregate the two source signals toward the maximization of independence. Since there is no clue to find whether it is speech signal or not, the coefficients of the slope was calculated by the autocovariances of the signals in frequcency domain. Noise remover for speech signals was implemented by coupling the two algorithms.

Non-redundant Precoding Based Blind Channel Estimation Scheme for OFDM Systems (OFDM 시스템에서 비중복 프리코딩을 이용한 미상 채널 추정 방법)

  • Seo, Bang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6A
    • /
    • pp.450-457
    • /
    • 2012
  • For orthogonal frequency-division multiplexing (OFDM) systems, we propose a blind channel estimation scheme based on non-redundant precoding. In the proposed scheme, a modified covariance matrix is first obtained by dividing the covariance matrix of the received signal vector by the precoding matrix element-by-element. Then, the channel vector is estimated as an eigenvector corresponding to the largest eigenvalue of the modified covariance matrix. The eigenvector can be obtained by power method with low computational complexity instead of the complicated eigenvalue decomposition. We analytically derive a mean square error (MSE) of the proposed channel estimation scheme and show that the analysis result coincides well with the simulation result. Also, simulation results show that the proposed scheme has better MSE and bit error rate (BER) performance than conventional channel estimation schemes.

Implementation of TFDR system with PXI type instruments for detection and estimation of the fault on the coaxial cable (동축 케이블의 결함 측정에 있어서 PXI 타입의 계측기를 이용한 개선된 TFDR 시스템의 구현)

  • Choe, Deok-Seon;Park, Jin-Bae;Yun, Tae-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.91-94
    • /
    • 2003
  • In this paper, we achieve implementation of a Time-Frequency Domain Reflectometry(TFDR) system through comparatively low performance(100MS/s) PCI extensions for Instrumentation(PXI). The TFDR is the general methodology of Time Domain Reflectometry(TDR) and Frequency Domain Reflectometry(FDR). This methodology is robust in Gaussian noises, because the fixed frequency bandwidth is used. Moreover, the methodology can get more information of the fault by using the normalized time-frequency cross correlation function. The Arbitrary Waveform Generator(AWG) module generates the input signal, and the digital oscilloscope module acquires the input and reflected signals, while PXI controller module performs the control of the total PXI modules and execution of the main algorithm. The maximum range of measurement and the blind spot are calculated according ta variations of time duration and frequency bandwidth. On the basis of above calculations, the algorithm and the design of input signals used in the TFDR system are verified by real experiments. The correlation function is added to the TDR methodology for reduction of the blind spot in the TFDR system.

  • PDF

Application of ray-based blind deconvolution to long-range acoustic communication in deep water (음선 기반 블라인드 디컨볼루션의 장거리 심해 환경으로의 적용)

  • Kim, Donghyeon;Park, Heejin;Kim, J.S.;Hahn, Joo Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.242-253
    • /
    • 2022
  • When the source waveform is unknown, the Green's function can be estimated by Ray-based Blind Deconvolution (RBD) based on the simple array signal processing. In previous papers, RBD was successfully demonstrated using simulation and experiments in shallow water environment. In this paper, we investigate the applicability of RBD for a long-range communication (e.g., 30 km, 60 km, and 90 km) in a deep water environment (1,000 m ~), using experimental data conducted in the east of Pohang, South Korea, in October 2018. Data results are presented to demonstrate Green's function estimation of a communication signal (2.2 kHz ~ 2.9 kHz) using a 16-element, 42-m long vertical array. The results show that the Green's function estimated from RBD is comparable to that of matched filter result. Additional communication performance at a maximum range of 90 km will be also presented.

Method for Channel Estimation in Ambient Backscatter Communication (주변 후방산란 통신에서의 채널 추정기법)

  • Kim, Soo-Hyun;Lee, Donggu;Sun, Young-Ghyu;Sim, Issac;Hwang, Yu-Min;Shin, Yoan;Kim, Dong-In;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.7-12
    • /
    • 2019
  • Ambient backscatter communication is limited to channel estimation technique through a pilot signal, which is a channel estimation method in current RF communication, due to transmission power efficiency. In a limited transmission power environment, the research of traditional ambient backscatter communication has been studied assuming that it is an ideal channel without signal distortions due to channel conditions. In this paper, we propose an expectation-maximization(EM) algorithm, one of the blind channel estimation techniques, as a channel estimation method in ambient backscatter communication system which is the state of channel following normal distribution. In the proposed system model, the simulations confirm that channel estimate through EM algorithm is approaching the lower bound of the mean square error compared with the Bayesian Cramer-Rao Boundary(BCRB) to check performance. It shows that the channel parameter can be estimated in the ambient backscatter communication system.

Development of FEA-based Metal Sphere Signal Map for Nuclear Power Plant Structure (유한요소해석 기반 원전 기계구조물 충격-질량지표 개발)

  • Moon, Seongin;Kang, To;Han, Soonwoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.14 no.1
    • /
    • pp.38-47
    • /
    • 2018
  • For safe operation of nuclear power plants, a loose-part monitoring system (LPMS) is used to detect and locate loose-parts within the reactor coolant system, and to estimate their mass and damage potential. There are several methods to estimate mass, such as the center frequency method based on the Hertz's impact theory, a frequency ratio method and so on, but it is known that these methods cannot provide accurate information on impact response for identifying the impact source. Thanks to increasing computing power, finite element analysis (FEA) method recently become an available option to calculate reliably impact response behavior. In this paper, a finite element analysis model to simulate the propagation behavior of the bending wave, generated by a metal ball impact, is validated by performing a series of impact tests and the corresponding finite element analyses for flat plate and shell structures. Also, a FEA-based metal sphere signal map is developed, and then blind tests are performed to verify the map. This study provides an accurate simulation method for predicting the metal impact behavior and for building a metal sphere signal map, which can be used to estimate the mass of loose-parts on site in nuclear power plants.

Shell Partition-based Constant Modulus Algorithm (Shell 분할 기반 CMA)

  • Lee, Gi-Hun;Park, Rae-Hong;Park, Jae-Hyuk;Lee, Byung-Uk
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.1
    • /
    • pp.133-143
    • /
    • 1996
  • The constant modulus algorithm (CMA), one of the widely used blind equalization algorithms, equalizes channels using the second-order statistic of equalizer outputs. The performance of the CMA for multi-level signals such as the quadrature amplitude modulation (QAM) signal degrades because the CMA maps all signal power onto a single modulus. in this paper, to improve the equalization performance of a QAM system, we propose a shell partitioning method based on error magnitude. We assume the probability distribution of an equalizer output as Gaussian, and obtain decision boundaries by maximum likelihood estimation based on the fact that the distribution of the equalizer output power is noncentral $x^2$. The proposed CMA constructs a multi-moduli equlization system based on the fact that each shell separated by decision boundaries employs a single modulus. Computer simulation results for 32-QAM and 64-QAM show the effectiveness of the proposed algorithm.

  • PDF

Underdetermined Blind Source Separation from Time-delayed Mixtures Based on Prior Information Exploitation

  • Zhang, Liangjun;Yang, Jie;Guo, Zhiqiang;Zhou, Yanwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2179-2188
    • /
    • 2015
  • Recently, many researches have been done to solve the challenging problem of Blind Source Separation (BSS) problems in the underdetermined cases, and the “Two-step” method is widely used, which estimates the mixing matrix first and then extracts the sources. To estimate the mixing matrix, conventional algorithms such as Single-Source-Points (SSPs) detection only exploits the sparsity of original signals. This paper proposes a new underdetermined mixing matrix estimation method for time-delayed mixtures based on the receiver prior exploitation. The prior information is extracted from the specific structure of the complex-valued mixing matrix, which is used to derive a special criterion to determine the SSPs. Moreover, after selecting the SSPs, Agglomerative Hierarchical Clustering (AHC) is used to automaticly cluster, suppress, and estimate all the elements of mixing matrix. Finally, a convex-model based subspace method is applied for signal separation. Simulation results show that the proposed algorithm can estimate the mixing matrix and extract the original source signals with higher accuracy especially in low SNR environments, and does not need the number of sources before hand, which is more reliable in the real non-cooperative environment.

Implementation of Behavior Notification System for Guide Dog Harness Using IMU and Accelerometer Sensor (IMU 및 가속도 센서를 이용한 안내견 하네스 행동 알림 시스템 구현)

  • Ahn, Byeong-Gu;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.1
    • /
    • pp.15-21
    • /
    • 2015
  • In this paper, a behavior notification system of the harness of a guide dog is implemented for a blind person to get helps for environmental and situational awareness while walking with the guide dog. IMU modules is attached on the guide dog's harness saddle and the acceleration sensor belt is mounted on its thigh. Gait estimation and behavior judgement are performed by recording and analyzing the outputs of the sensors. Performance analysis for seven different kinds of behaviors has been done. The seven different behaviors, which the guide dog recognizes, are descending stairs, climbing stairs, uphill, downhill, stop, flat road, and selective disobedience. Results for the performance analysis show that the average success rate of the behavior rule estimation of harness of the guide dog is 92.78% and the behavior notification system can be effectively used in real situations.