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Abstract – Recently, many researches have been done to solve the challenging problem of Blind 
Source Separation (BSS) problems in the underdetermined cases, and the “Two-step” method is widely 
used, which estimates the mixing matrix first and then extracts the sources. To estimate the mixing 
matrix, conventional algorithms such as Single-Source-Points (SSPs) detection only exploits the 
sparsity of original signals. This paper proposes a new underdetermined mixing matrix estimation 
method for time-delayed mixtures based on the receiver prior exploitation. The prior information is 
extracted from the specific structure of the complex-valued mixing matrix, which is used to derive a 
special criterion to determine the SSPs. Moreover, after selecting the SSPs, Agglomerative 
Hierarchical Clustering (AHC) is used to automaticly cluster, suppress, and estimate all the elements 
of mixing matrix. Finally, a convex-model based subspace method is applied for signal separation. 
Simulation results show that the proposed algorithm can estimate the mixing matrix and extract the 
original source signals with higher accuracy especially in low SNR environments, and does not need 
the number of sources before hand, which is more reliable in the real non-cooperative environment. 
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1. Introduction 
 
The goal of Blind Source Separation (BSS) is to separate 

source signals only using the mixtures, which has been 
widely used in the fields of audio, biomedical, digital 
communications, and array signal processing [1-3]. Recently, 
many researches focus on the Underdetermined Blind 
Source Separation (UBSS) problems when the number of 
observations is less than the sources [4, 5], in which 
conditions the Independent Component Analysis (ICA) 
methods are no longer applicable. Instead, “two-step” 
method is introduced, which estimates the mixing matrix 
first and then separates the sources [6, 7].  

Obviously, mixing matrix estimation is the first and 
crucial step in the whole process of UBSS, and some 
classical methods have been developed, such as Sparse 
Component Analysis (SCA) and statistical-based methods, 
etc. SCA methods aim to exploit the sparse nature of 
sources in Time-Frequency (TF) domain and then use the 
clustering algorithms to estimate the mixing matrix, which 
have some requirements for sparsity [8, 9]. Differently, 
statistical-based methods further exploit the mutual 
statistical independence between sources, and formulate 
the problem in terms of a decomposition of a tensor (such 

as Canonical Decomposition), which has closed form 
solutions in some cases [10, 11]. For example, X. Luciani 
et al. [12] formulated the Second Characteristic Function 
(CAF) of the observations, and blindly estimated the 
underdetermined mixing matrix successfully using tensor 
decomposition. However, even if the mixing matrix has 
been estimated, the original signals are still not easily 
recovered in the underdetermined condition because the 
model has more unknowns than equations. To solve the ill-
conditioned problem, additional assumptions must be set, 
then sources can be extracted by minimum norm solution 
using pl -norm criterion [13], matrix diagonalization [14], 
and subspace method [15], etc.  

Among the existing algorithms, Single-Source-Point 
(SSP) detection [16-18] is a kind of simple and efficient 
method for mixing matrix estimation, which achieves 
good performance in both over and underdetermined 
cases. Specifically, it sets no conditions on the stationarity, 
independence or non-Gaussianity of the sources, which 
made it be widely used. F. Abrard et al. [19] first introduced 
the concept of single-source regions, and developed the 
Time-Frequency Ratio of Mixtures (TIFROM) algorithm 
for instantaneous mixtures. Based on this, M. Puigt et al. 
[20] got two extensions, which take both attenuation and 
delay into account. However, TIFROM-based methods 
have their limitations. They suppose single-source TF 
regions can be found, but if only discrete SSPs exist, the 
performances will turn worse.  

Recently, exploitation of prior information and latent 
component has been proved to be quite powerful for blind 
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separation in some complicated conditions. V. G. Reju [17] 
found that the directions of real and imaginary parts of 
Fourier transform coefficients of the same source should 
stay the same when the sources are linear instantaneous 
mixed. In general, Reju’s method is simple and practicable, 
but it works only when the elements of mixing matrix are 
real-valued, which limits their applications. Lihui et al. 
[18] determined another criterion to identify SSPs. After 
that, binary masking and K-means clustering methods are 
implemented to get the clustering centers. However, K-
means algorithm needs to know the number of sources to 
ensure the accuracy, which is not able to be guaranteed in 
non-cooperative environment.  

In this paper, a new mixing matrix estimation method 
for UBSS from delayed mixtures is introduced. Firstly, 
we exploit prior information carried on by the special 
structured complex mixing matrix, and then derive the new 
criterion for SSPs detecting. Then, modified Agglomerative 
Hierarchical Clustering (AHC) is used for automatic 
clustering and mixing matrix calculating. Finally, subspace 
projection method is used to extract the original signals.  

The main contribution of this paper is to propose a new 
algorithm based on SSP detection for complex-valued 
mixing matrix estimation. Comparing with the existing 
algorithms, the proposed prior-aided algorithm plays a 
more rigid role in SSPs detecting, which achieves better 
performance for mixing matrix estimation, especially in 
noisy environment. 

The remainder of this paper is organized as following. 
Section 2 provides problem formulation. Section 3 studies 
the priors and derives the criterion for SSPs detecting. In 
section 4, AHC is introduced for mixing matrix estimation. 
Section 5 proposes the separation method based on 
subspace. Simulation results are given in section 6. Section 
7 concludes this paper. 

 
 

2. Problem Formulation 
 

2.1 Signal mixing model 
 
In this paper, the anechoic mixing model is used taking 

the time delay of sources into account. Uniform Linear 
Antenna (ULA) is used here to receive the signals, as 
shown in Fig. 1. It is a delayed mixture model by 
considering the time delay τ . nφ  is the incident angle of 
n-th signal. d  is the element spacing, which is set to 

2d λ= , where λ  is wavelength.  

( )1x t ( )2x t ( )Mx t( )ix t

( )ns t

nφ

d

τ

 
Fig. 1. Uniform Linear Antenna with M elements 

The received mixture at i-th element by linear delayed 
mixing can be written as 

 

 
1

( ) ( ) (t) ( 1,2, , )
N

i n in i
n

x t s t w i Mτ
=

= − + =∑   (1) 

 
where 

( )ix t  observed i-th mixture signal, 
( )ns t  n-th source signal, 
( )iw t  additive white Gaussian noise at i-th element, 

inτ time delay for n-th source transmitting to thei-th 
element, and for ULA antenna, ( 1) cosin ni d cτ φ= − . 

 
For narrow-band signals, (1) can be changed into 
 

 2

1

( ) ( ) ( ) ( 1, 2, , )n in

N
j f

i n i
n

x t s t e w t i Mπ τ−

=

= + =∑   (2) 

 
where nf  is the carrier frequency of each source signal 
[14]. Particularly, if source signals are real-valued, Hilbert 
transformation must be applied first to get the analytic 
signals. Then, rewrite (2) in the form of matrix operation 

 
 ( ) ( ) ( )t t t= +x As w   (3) 

 
where ( ) ( ) ( ) ( )1 2, , ,

T M
Mt x t x t x t⎡ ⎤= ∈⎣ ⎦x ,  

( ) ( ) ( ) ( )1 2, , ,
T N

Nt s t s t s t⎡ ⎤= ∈⎣ ⎦s  and  

( ) ( ) ( ) ( )1 2, , ,
T M

Mt w t w t w t⎡ ⎤= ∈⎣ ⎦w . M N×∈A  is  

the complex-valued mixing matrix with element 2 c inj fe π τ− . 
 

2.2 Short-Time Fourier Transform (STFT) 
 
Short-time fourier transform is adopted to exploit the 

sparsity of signals in TF domain. The STFT of source and 
mixture signals are defined as 

 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

2

, 1

, 1

j f
n n

j f
i i

S t f s h t e d n N

X t f x h t e d i M

π τ

π τ

τ τ τ

τ τ τ

+∞ ∗ −

−∞
+∞ ∗ −

−∞

⎧ = − ≤ ≤⎪
⎨

= − ≤ ≤⎪⎩

∫
∫

 (4) 

 
where h(t) is the window function. 

Considering that A  is a constant, and applying STFT to 
(3) at both sides, the mixing model in TF domain becomes 

 
 ( ) ( ) ( ), , ,t f t f t f= +X AS W   (5) 

 
2.3 Assumptions 

 
The sources are supposed to be non-Gaussian and 

statistically independent. In the underdetermined case, the 
number of sources is larger than the number of sensors, i.e., 
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N M> . To separate all the source signals successfully, the 
ill-conditioned UBSS model should satisfy the following 
assumptions. 

Assumption 1: For each source, there exist some TF 
points where the source exists alone. This assumption is 
necessary only for mixing matrix estimation since we 
develop the algorithm based on SSP detection. 

Assumption 2: Any M M×  submatrix of the mixing 
matrix A  is of full rank. This assumption helps us in the 
mixing matrix estimation. To maintain this, sources are 
assumed to come from different directions in the 
simulation.  

Assumption 3: The number K  of sources occur at any 
TF point is less than the number M  of observations, i.e., 
K M< . This assumption is required for original signals 
extraction using subspace projection method. 

 
 

3. Proposed SSPs Detection Method 
 

3.1 Prior information exploitation 
 
Prior information can help to improve the performance 

especial in the complicated environments. Usually, they are 
derived from the analysis of source signals, which cannot 
be acquired in the premise of “blind”. Consequently, we 
exploit the information from the receiver end. 

In section 2, time-delayed mixture is introduced. 
Different from the commonly studied instantaneous 
mixtures, mixing matrix A  in (3) is a complex-valued 
with a specific structure, which can be expressed as 

 

 
( ) ( ) ( )

1 2

1 2

coscos cos

1 cos 1 cos 1 cos

1 1 1
N

N

jj j

j M j M j M

e e e

e e e

π φπ φ π φ

π φ π φ π φ

−− −

− − − − − −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

A   (6) 

 
The objective of mixing matrix estimation is to calculate 

all the elements in (6). The column vector of mixing matrix 
corresponds to every source signal, which is 

 

 
( )

( ) ( )
2, 3, ,

1 coscos

[1, , , , ]

[1, , , ] , 1nn

T
n n n n M n

j Mj T

a a a

e e n Nπ φπ φ

φ
− −−

=

= ≤ ≤

b
  (7) 

 
where ,i na  denotes the element at i-th row and n-th 
column of A . Obviously, all the elements at the first 
row are equal to 1, whereas the others can be written as 
complex numbers, with modulus equal to 1. Let 

, , ,i n i n i na R jI= + , then the prior information can be 
achieved as 

 

 ( )1,
2 2

, , ,

1
1 ,1

1
n

i n i n i n

a
i M n N

a R I
=⎧⎪ ≤ ≤ ≤ ≤⎨ = + =⎪⎩

 (8) 

Different from the commonly referred “prior information” 
exploited from the internal characteristics of sources, (8) is 
derived only using the parameters of receiver antennas, 
which is feasible in practice. 

 
3.2 Proposed method for SSPs detecting 

 
To estimate the mixing matrix, we detect the SSPs in the 

TF domain where only one source is active first, and then 
classify them by clustering method to achieve the 
estimation of mixing matrix. In this section, a new SSPs 
detection based on prior information is introduced as 
follows. 

Temporarily ignoring the noises, (5) can be expressed as 
 

 
( ) ( ) [ ]

( )
( )

( )
( ) ( ) ( )

1

2

1 2

,
,, , , , ,

,
, , ,

N

N

S t f
S t ft f t f

S t f
S t f S t f S t f

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
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= + + +

1 2 N

1 2 N

X AS b b b

b b b

  (9) 

 
Suppose TF point ( )1 1,t f  is a SSP, where only signal 
( )ns t  is active, then (9) becomes 
 

 ( ) ( )1 1 1 1, ,nt f S t f= nX b   (10) 
 
Apply (7) into (10), and considering the particularity of 

1na  equals to 1, we get 
 

 
( ) ( )
( ) ( ) ( )

1 1 1 1 1

1 1 , 1 1

, 1 ,
, , 2

n

i i n n

X t f S t f
X t f a S t f i M

⎧ = ⋅⎪
⎨ = ⋅ ≤ ≤⎪⎩

  (11) 

 
Obviously, ( )1 1,iX t f , ( )1 1,nS t f  and , , ,i n i n i na R jI= +  

are all complex numbers. Rewrite (11) in the form of 
complex multiplication as 

 
( )( ) ( )( )1 1 1 1Re , Im ,i iX t f j X t f+  

( )( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( )

1 1 1 1

, , 1 1 1 1

Re , Im , 1

Re , Im , 2
n n

i n i n n n

S t f j S t f i

R jI S t f j S t f i M

⎧ + =⎪= ⎨ ⎡ ⎤+ ⋅ + ≤ ≤⎪ ⎣ ⎦⎩
 

   (12) 
 

where ( )Re X  and ( )Im X  denote the real and imaginary 
part of X , respectively. So 

 
( )( ) ( )( )
( )( ) ( )( )

1 1 1 1 1

1 1 1 1 1

Re , Re ,
Im , Im ,

n

n

X t f S t f
X t f S t f

⎧ =⎪
⎨

=⎪⎩
  (13) 

( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

1 1 , 1 1 , 1 1

1 1 , 1 1 , 1 1

Re , Re , Im ,
Im , Im , Re ,

i i n n i n n

i i n n i n n

X t f R S t f I S t f
X t f R S t f I S t f

⎧ = ⋅ − ⋅⎪
⎨

= ⋅ + ⋅⎪⎩
   (14) 

 
Apply (13) into (14) we can get 
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( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

1 1 , 1 1 1 , 1 1 1
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⎨
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   (15) 
 
Then, considering that 2 2

, , 1i n i nR I+ = , (15) can be 
rewritten as 

 
( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

1 1 1 , 1 1 , 1 1

1 1 1 , 1 1 , 1 1

Re , Re , Im ,
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   (16) 
 

which can be changed to the form of matrix operation as 
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   (17) 
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1
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−
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   (18) 
 
Obviously, only ,i nR  and ,i nI  are unknown, which can 

be calculated by (18) directly. Each SSP corresponds to a 
vector , ,[ , ]T

i n i nR I , which satisfies , , , 1i n i n i na R jI= + =  
under ideal conditions. However, because of the noise and 
computational errors, ,i na  may not equal to 1 strictly, 
then the threshold ε  (which is very close to 0) is 
introduced, and the SSPs should satisfy the following 
inequation as in (19). 
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( )( )

1
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2
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−
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   (19) 
 

3.3 Feasibility analysis 
 
Remark 1: Multi-Source-Points (MSPs) do not satisfy 

(19). 
Derivation in Section 3.1 proves that criterion (19) holds 

when a TF point is SSP. However, the actual SSPs 
detection is a reverse process, that is, a TF point is 
determined to be a SSP if it satisfies (19). Before doing this, 
we have to ensure MSPs will not meet the criterion. 

Suppose ( ), ( 1, 2, , )
p

s t p Nα α=  are the pN  sources 
occur at TF point 2 2( , )t f . That is 
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Then, similar with (12), (21) can be got as 
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So that, 
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   (22) 
 
Then, as for 2 i M≤ ≤ , following equation can be got 
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Suppose (19) also holds at MSPs, equations like (16) can 

also be got with the help of (22), that is 
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It is obvious that (23) and (24) hold at the same time 

only when the following conditions are satisfied. 
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Considering that 2 2

, ,Re ( ) Im ( ) 1
q qi ia aα α+ =  and 

2 2
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p pi ia aα α+ = , (26) can be obtained as 
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Eq. (26) reveals that there are two different column 
vectors with same values, that is, ( ),

p q
p qα α= ≠b b . It is 

impossible because Assumption 2 ensures that the mixing 
matrix proposed in (4) is column full rank, which means 
the sources come from different directions. Therefore, (26) 
can not meet, and MSPs can not satisfy criterion (19). 

 
Remark 2: Algorithm can be applied to wideband 

signals. 
For wideband signals, (2) is no longer exist, apply SFTF 

to (1) directly, so that 
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  (27) 

 
Let ' int t τ= − , (27) can be changed into 
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Rewrite (28) in the form of matrix operation as 
 

 ( ) ( ) ( ) ( ), , ,t f f t f t f= +X A S W   (29) 
 

where ( ) 2
,

inj f
i n f e π τ−=A . Different from (5), the mixing 

matrix ( )fA  is not a constant in the whole TF domain, 
whereas a function of f  instead. However, given a fixed 
TF point ( )2 2,t f , ( )fA  is determined immediately. 
Then, (29) is equivalent to the standard narrowband model, 
which means that the proposed SSPs detection method is 
also available for wideband signals. 

 
Definition 1: Any TF point ( )0 0,t f  is determined as a 

SSP only when criterion (19) is satisfied. And SSPs can be 
collected as a series of data vector as 

 

( ) ( ) ( )( ) ( )( )
( )( ) ( )( )

1

1 1 1 1
, ,

1 1 1 1

Re , Im ,
Re , Im

Im , Re ,
T i i

i n i n
i i

X t f X t f
a a

X t f X t f

−
⎡ ⎤

⎡ ⎤ ⎢ ⎥=⎣ ⎦ −⎢ ⎥⎣ ⎦

( )( )
( )( )

1 1 1

1 1 1

Re ,
Im ,

X t f
X t f

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

  (30) 

 
The only thing to note here is that the proposed SSP 

detection method works under the condition with at least 

two observed signals, i.e., 2M ≥ , which makes sure (30) 
can be used to get the data for clustering. 

 
 

4. Mixing Matrix Estimation Based on AHC 
 
Every detected SSP corresponds to a matrix element 
( ), 2 ,1i na i M n N≤ ≤ ≤ ≤ , and it is a complex of which 

modulus value is 1. They should distribute on a unit circle 
when setting X and Y axis correspond to the real and 
imaginary part respectively, and show a clustering feature 
to indicate different sources. After applying clustering 
method, clustering centers can be obtained, which denote 
different elements of mixing matrix. Once estimate all the 
matrix elements ( )ˆ 2 ,1ina i M n N≤ ≤ ≤ ≤ , the mixing 
matrix can be formulated as 

 

 2,1 2,2 2,

,1 ,2 ,

1 1 1
ˆ ˆ ˆˆ

ˆ ˆ ˆ

N

M M M N

a a a

a a a

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

A   (31) 

 
K-means clustering method is commonly used for its 

fast computation and high accuracy especially for large 
data. However, it needs to know the clustering number and 
initial cluster centers before hand, which is difficult in non-
cooperative environments. It may converge to a local 
solution if inappropriate initialization is used. Besides, K-
means method ascribes every scatter point to one class 
including the scatter points caused by noises, which 
undoubtedly increases the estimation error. Fig. 2 shows 
the distribution of SSPs. C1, C2, and C3 refer to the actual 
cluster centers. In fact, scatter points usually can not be 
avoided, which usually locate far from the true centers. 
They may be caused by noises or calculation errors, which 
should be discarded.  

To overcome the shortage of general clustering methods, 
a special agglomerative hierarchical clustering is used for 
automatic clustering. The so-called “agglomerative” refers 
to the algorithm initialization. It initializes every SSP as a 
class and merges the two closest clusters at each step, and 
results in a series of classes. At last, the final clusters are 
determined after removing the scattered classes caused by 
noises or computation errors. Here, two parameters are 
adopted, th_d denotes the minimum Euclidean distance to 
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Fig. 2. Schematic plot of SSPs’ distribution histogram. 
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determine when the clustering is completed, and th_N is 
used to drop discrete error classes. In this way, the number 
of sources is estimated together with the elements of 
mixing matrix. To further eliminate the influence of noise, 
the singular value decomposition method is applied, which 
takes the singular vectors with maximum singular values as 
the estimation of mixing matrix elements. The advantage 
of the AHC method is that in the non-transition merger 
cases, the noise points have their own clusters and 
discarded at last, which reduces the interferences for center 
calculating. 

Suppose [ , ] ( 1, 2, , )T
l l lU R I l L= =  denotes the 

detected L SSPs. Then, some important parameters are 
defined as follows. lP  denotes different classes with lN  

elements, that is, { }1 2, , ,
ll NP U U U= . Define the center 

of lP  and distance between every two classes as 
 

 
1

1 lN

l k
kl

C U
N =

= ∑   (32) 

 
1 2 1 2 2l l l lD C C= −   (33) 

 
The detailed algorithm for mixing matrix estimation is 

provided in Table 1. 
 

Table 1. Mixing matrix estimation based on SSP and AHC 

Input mixed signals ( ), 1,2, ,ix t i M= . 
1). Calculate ( , )t fX  using STFT in (4); 
2). Detect SSPs using (19), and calculate the dataset 

[ , ] , 1, 2, ,T
l l lU R I l L= =  using (30); 

3). Initialization for AHC: set th_d and th_N; generate L 
classes { } , 1, 2, ,l lP U l L= = ; calculate distances 

using (32) and (33) between each class as 1 2 1 2, ,l lD l l =  
1, 2, L ; 

4). while { }1 2
( _ ) 0l lfind D th d< > , do: 

(i) Merge two classes with distance less than th_d, 'L  is 
the new number of classes; 

(ii) Calculate new 
1 2

'
1 2, , 1, 2,l lD l l L=  using (32) and 

(33); 
5). Keep classes ( 1, 2, , )kP k N=  with element number 

larger than th_N, calculate the final clustering center 
using (32) as ˆ ˆ[Re( ), Im( )]T

mn mna a ; 
6). Build matrix Â  using (31) with all the ˆmna ; 

Output estimated mixing matrix Â . 
 
 

5. Source Signals Extraction 
 
After estimating the mixing matrix, source separation 

algorithm is then used to extract the original signals. 
However, source signals can not be directly acquired 

since we can not calculate the inverse matrix of mixing 
matrix in the underdetermined case. The UBSS model is 
ill-conditioned, which has an infinite number of possible 
solutions exactly. However, after exploiting the sparsity of 
sources and under some assumptions, it can be solved 
successfully. Aissa-El-Bey et al. [15] first introduced the 
subspace projection method for signal extraction supposing 
the number of signals appeared at any TF point was less 
than the number of sensors.  

Suppose the number of active source at TF point 
( 0 0,t f ) is K, and the signals are 1

( ), , ( )
K

s t s tα α , 

respectively, K<M  and { } { }1, , 1, 2, ,K Nα α ⊂ . 
Define the actual mixing matrix at 0 0( , )t f  as K =A  

1
[ , , ]

Kα αa a , which corresponds to the source signal 

matrix 
1

( ) [ ( ), , ( )]
K

Tt s t s tα α=s . Then, temporarily ignoring 
the additive noise item, the mixing model after STFT in (5) 
at point 0 0( , )t f  can be written as 0 0 0 0( , ) ( , )Kt f t f=X A S . 

The orthogonal projection matrix Q for 1
( ), , ( )

K
s t s tα α  

projecting to noise space is calculated by 
 

 ( ) 1H H
K K K K

−
= −Q I A A A A   (34) 

 
{ }
{ } { }

1

1

0, , ,
0, 1, 2, , , , ,

i K

i K

i
i N i

α α
α α

⎧ = ∈⎪
⎨ ≠ ∈ ∉⎪⎩

Qa
Qa  (35) 

 
In real environment, because of the noises and 

calculation errors, { }1( , , )i Ki α α∈Qa  are not strictly 
equal to 0, whereas very close to 0 instead. Considering 
that A  has been estimated, the column vectors of KA  
can be detected by minimizing 

 

 { } ( ){ }
1

1 0 0, ,
, , arg min ,

K
K Kt f

α α
β β = QX A   (36) 

 
Then the real mixing matrix at TF point 0 0( , )t f  can be 

formed as 1
[ , , ]

KK β β=A a a . 
The STFT values of K  sources at 0 0( , )t f  are 

estimated by pseudo-inverse calculation 
 

 ( ) ( )1
0 0 0 0, ,Kt f t f−=S A X   (37) 

 
At last, transform 0 0( , )t fS  back to time domain using 

inverse STFT. 
In general, the subspace-based method works well in 

most cases. However, the authors [21] have proved that it 
may “over-estimated”, which means the estimated mixing 
matrix at TF point 0 0( , )t f  is larger than the actual ones. 
To solve the problem, a modified subspace method based 
on convex model is proposed by replace (36) with new 
objective function 

 
{ } ( ) ( ){ }

1
1 0 0, ,
, , arg min ,

r
r r r rt f rank

α α
β β γ= + ⋅Q X A A  (38) 
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where γ  is the balance factor, which is set to 0.4 in the 
simulation. 

 
 

6. Simulation and Results 
 
Estimation error EA  and average Signal to Interference 

Ratio (SIR) are adopted to measure the performance of 
mixing matrix estimation and signal extraction, 
respectively, as in (39). 

 

 ( )

( ) ( )

2

2
1

1 ˆ10 lg ( )

1 10lg ( )
ˆ

F

N n

n
n n

E dB
N

E s t
SIR dB

N E s t s t=

⎧ ⎛ ⎞= −⎪ ⎜ ⎟
⎝ ⎠⎪⎪ ⎛ ⎞⎡ ⎤⎨ ⎜ ⎟⎢ ⎥⎣ ⎦⎪ = ⎜ ⎟⎪ ⎡ ⎤−⎜ ⎟⎪ ⎢ ⎥⎣ ⎦⎝ ⎠⎩

∑

A A A

  (39) 

 
where N is the number of sources, A  and Â  are the 
actual and estimation of mixing matrix. F

i  calculates 
the Frobenius norm. In the following simulations, speech 
signals are used. The time window length of STFT is 32, 
overlapping with 0.75, FFT size is 256, and threshold for 
SSPs detecting is 0.001ε = . Set th_d and th_N to 0.3 and 
90, respectively.  

 
6.1 Performance of mixing matrix estimation  

 
In this part, ULA with 2 sensors is adopted for simplicity. 

Three speech signals are taken as sources, and the DOAs 
are 8π , 4π  and 5 8π , respectively, SNR is 25dB, the 
actual mixing matrix can be calculated using (6) as  

 
1 1 1

 -0.9715+0.2369j  -0.6057+0.7957j 0.3603-0.9328j
⎡ ⎤= ⎢ ⎥⎣ ⎦

A

  (40) 
 
Fig. 3 shows the scatter plot of detected SSPs. 

Theoretically, all the column vectors of mixing matrix 
should be different when setting different DOAs, and 
then clustering methods can be used to distinguish. In Fig. 
3(a), all the SSPs locate on a unit circle, and obvious 
clustering characteristic is shown according to the SSPs’ 
density of distribution. More points stay around the actual 
centers. Fig. 3(b) shows the SSPs’ distribution after AHC, 
with most discrete points removed. Clearly, the proposed 
method can cluster the SSPs into three groups 
automatically, and the estimated centers almost have the 
same position as the actual centers. The estimated mixing 
matrix is Â  as in (41), with EA  equals to -19.5298dB. 

 
1 1 1ˆ

0.9604 0.2520j -0.5862 0.7811j 0.3492 0.9261j
⎡ ⎤= ⎢ ⎥− + + −⎣ ⎦

A   

  (41) 
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Fig. 3. Performance of AHC for SSPs: (a) SSPs before 
clustering; (b) SSPs after AHC. Blue and red 
points represent the estimated and actual centers, 
respectively. 

 
Fig. 4 shows the performance of mixing matrix 

estimation with different SNRs, in comparison with the 
TIFROM [20] and the algorithms proposed by Reju [16] 
and Lihui [18]. When the SNR increases, the estimation 
errors of all the algorithms reduce. Lihui’s method seems a 
little different, it achieves the best performance with large 
SNRs, but the degradation is obvious in low SNRs 
conditions. It is reasonable, because the scatter points 
caused by noises greatly reduced in high SNR conditions, 
which is more convenient for clustering. On the contrary, 
lower SNR results in more error scatter points, and K-
means method ascribes every scatter point to one class, 
which undoubtedly increases the estimation error. The 
algorithm proposed in this paper has the most stable and 
reliable performance, with error changing less than 5dB 
when SNR decreases from 40dB to 15dB. It outperforms 
the ones developed by Reju and TIFROM, with about 6dB 
error reduction when SNR is lower than 30dB. Particularly, 
the proposed method plays a stricter rule in detecting the 
SSPs by exploiting prior information of mixing matrix, 
which makes it more effective in low SNR environments. 
The advantage is more obvious when the number of 
sources increases, and the optimal SNR range expands. 
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Fig. 4. Performances with different SNRs, M =2: (a) N =3; 
(b) N =4. 
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Fig. 5. Performances with different number of sources, 
M =2. (a) SNR=15dB; (b) SNR=25dB. 

Fig. 5 describes the performance with different number 
of sources. The increase of source number results in the 
estimation error expansion. Lihui’s method has the least 
estimation error when N =2, but when N increases, its 
performance drops together with the others. The proposed 
method has better performance when the source number 
continues to increase, and gets the lowest EA  at last. In 
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Fig. 6. Separation results with speech signals, SNR=25dB. 
(a)-(d) are three original signals; (e)-(g) are two 
observed mixtures; (h)-(k) represent the estimated 
source signals. 
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general, our method has significant advantages in low 
SNRs and more source environment, which make it more 
reliable in real applications. 

 
6.2 Performance of source signal extraction 

 
In this part, the number N of source is four and the 

number M of sensor is three. The DOAs of the signals 
are 11π , 3 11π , 5 11π  and 7 11π , respectively. Fig. 6 
shows that all the signals have been reconstructed 
successfully. The top four plots show the original signals; 
the middle three plots represent the three mixtures and the 
bottom four plots describe the estimation of sources by the 
proposed algorithm and subspace method. The recovered 
waves almost have the same shapes as the original ones.  

Fig. 7 shows the SIR comparison of different methods. It 
is clear that the proposed method achieves highest SIR 
when SNR is less than 30dB. It is reasonable because our 
method estimate the mixing matrix more accurately in the 
low SNR environments, which is consistent with the result 
expressed in Fig. 4(b). In particular, the performance tends 
towards stability when the SNR is higher than 30dB, which 
almost have the same performance as Lihui’s method.  
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Fig. 7. SIR comparison with different SNRs. 

 
 

7. Conclusion 
 
This paper focuses on the underdetermined blind source 

separation from linear time-delayed mixtures, and a new 
complex-valued mixing matrix estimation method based on 
prior information exploitation is developed. The proposed 
method relaxes the sparsity of signals as long as there are 
SSPs in TF domain, no matter continuous or discrete, and 
does not need the number of sources before hand, which 
makes it more reliable in the real non-cooperative 
environment. Simulation results indicate that the proposed 
method can estimate the mixing matrix and extract the 
original sources with higher accuracy, and has significant 
advantages especially in low SNR and more sources 
conditions. In the future work, our attention should be 
focused on exploiting more effective methods for 
underdetermined blind source separation in the non-

disjoint cases. Another trend for blind source separation 
is to extract more prior information about true nature, 
morphology or structure of latent variables or sources, to 
get better performance. 
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