• Title/Summary/Keyword: Blend surface

Search Result 168, Processing Time 0.028 seconds

Morphology and Mechanical Properties of Waste PVC Blends (II)- The Relationship between Rheology and Morphology of Waste PVC/PE Blends (폐폴리(염화 비닐)계 고분자 블렌드의 구조 및 물성 연구(II)-폐폴리(염화 비닐)/폴리에틸렌 고분자 블렌드의 형태학 및 유변학적 거동)

  • 유영재;박재찬;원종찬;최길영;이재흥
    • Polymer(Korea)
    • /
    • v.28 no.6
    • /
    • pp.460-467
    • /
    • 2004
  • The polymer blends of waste poly(vinyl chloride) (RPVC) and waste polyethylene (RPE) were prepared by melt mixing. Their morphologies and rheological properties were investigated and torque changes were also measured. Comparing the torques calculated by the log additivity rule with measured torque changes, the polymer blends showed the large negative deviation behavior (NDB) due to their incompatibility. The shear viscosities of the blends decreased with increasing shear rates, showing shear thinning behavior. The shear viscosity of the blends with compatibilizer was larger than that of the blends without compatibilizer. SEM micrographs of the strands after measurement showed that the domain size of the blends was slightly enlarged with increasing the shear rate. Also, RPVC domain size was larger in the core-sections of the strands from capillary viscometer than in the surface region.

Polymeric hole-injection layer for high-efficiency and long-lifetime in organic light-emitting diodes

  • Choi, Mi-Ri;Han, Tae-Hee;Woo, Seong-Hoon;Lim, Kyung-Geun;Yun, Won-Min;Kwon, Oh-Kwan;Park, Chan-Eon;Shin, Hoon-Kyu;Hur, Dal-Ho;Shin, Kyoung-Hwan;Jang, Jyong-Sik;Lee, Tae-Woo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.781-783
    • /
    • 2009
  • We achieved high efficiency and long lifetime in small-molecule organic light-emitting diodes using a blend of polyaniline-based conducting polymer and a perfluorinated ionomer as a hole injection layer (HIL). The HIL formed by single spin coating greatly enhanced the surface work function and thus the hole injection from the anode, which resulted in great improvement in device luminous efficiency. We find that the solution processed HIL outperforms the conventional vacuum-deposited small molecule HIL in terms of the device performance.

  • PDF

Characteristics of organic electroluminescent devices having buffer layers (Buffer층을 가진 유기 전기 발광 소자의 특성)

  • 이호식;고삼일;정택균;이원재;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.06a
    • /
    • pp.399-402
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic thin films have attracted lots of interests in large-area light-emitting display. One of the problems of such device is a lifetime, where a degradation of the cell is possibly due to an organic layers thickness, morphology and interface with electrode. In this study, light-omitting organic electroluminescent devices were fabricated using Alq$_3$(8-hydroxyquinolinate aluminum) and TPD(N,N'-diphenyl-N,N'-bis(3-methylphenyl(1-1\`-biphenyl]-4,4'-diamine). Where Alq$_3$ is an electron-transport and emissive layer, TPD is a hole-transport layer. The cell structure is ITO/TPD/Alq$_3$/Al and the cell is fabricated by vacuum evaporation method. In a measurement of current-voltage characteristics, we obtained a turn-on voltage at about 9 V. We also investigated stability of the devices using buffer layer with blend of PEI (Poly ether imide) and TPD by varying mot ratios between ITO and Alq$_3$. In current-voltage characteristics measurement, we obtained the turn-on voltage at about 6 V and observed an anomalous behavior at 3∼4 V. And we used other buffer layer of PEDT(3,4-pyrazino-3',4'-ethylenedithio-2,2',5,5'-tetrathiafulvalenium) with ITO/PEDT/TPD/Alq$_3$Al structure. We observed a surface morphology by AFM(Atomic Force Microscopy), UV/visible absorption spectrum, and PL(Photoluminescence) spectrum. We obtained the UV/visible absorption peak at 358nm in TPD and at 359nm in Alq$_3$, and the PL peaks at 410nm in TPD and at 510nm in Alq$_3$. We also studied EL spectrum in the cell structure of ITO/(TPD+PEI)/Alq$_3$/Al.

  • PDF

The Intumescent Flame Retardant Mechanism of Red-phosphorus Containing Ortho-Cresol Novolac / Biphenyl Epoxy Composites (적인을 포함한 Ortho-Cresol Novolac/Biphenyl 에폭시 복합재료의 발포성 난연 기구)

  • 김윤진;강신우;유제홍;김익흠;서광석
    • Polymer(Korea)
    • /
    • v.26 no.5
    • /
    • pp.623-633
    • /
    • 2002
  • The flame retardant and thermal properties of ortho-cresol novolac (OCN) and biphenyl epoxy blends containing red-phosphorus were investigated. For five types of compounds designed with the volume ratio of OCN and biphenyl epoxy, thermal properties were analysed by TGA or DTC, and flame retardancy effectiveness was estimated through UL-94V test. While the flame retardant and thermal properties were improved with the content of filler and red-phosphorus, the excessive amount of red-phosphorus caused to deteriorate those properties. Using the blends of OCN/biphenyl rather than pure OCN or biphenyl epoxy as a matrix the flame retardancy of composites could be improved by the synergic effects of high thermal resistance of OCN and intumescent property of biphenyl. The flame retardant me chanism of epoxy compound containing red-phosphorus could be thought of the heat-insulating effect of intumescent char-layer formed in the surface of composites.

Preparation and Comparison the Physical Properties of Polyurethane-Urea Using Biomass Derived Isosorbide (바이오매스 유래 이소소르비드를 이용한 폴리우레탄-우레아의 제조 및 특성 비교)

  • Park, Ji-Hyeon;Park, Jong-Seung;Choi, Pil-Jun;Ko, Jae-Wang;Lee, Jae-Yeon;Sur, Suk-Hun
    • Textile Coloration and Finishing
    • /
    • v.31 no.3
    • /
    • pp.165-176
    • /
    • 2019
  • Polyurethane-ureas(PUUs) were prepared from 4,4'-methylenebis(cyclohexyl isocyanate) and various diols including isosorbide. Isosorbide is starch-derived monomer that exhibit a wide range of glass transition temperature and are therefore able to be used in many applications. PUU was synthesized by a pre-polymer polymerization using a catalyst. Successful synthesis of the PUU was characterized by fourier transform-infrared spectroscopy. Thermal properties were determined by differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. It was found that by tuning isosorbide content in the resin, their glass transition temperature(Tg) slightly decreased. Physical properties were also determined by tensile strength and X-ray diffraction. There is no significant differences between petroleum-derived diol and isosorbide in XRD analysis. Moreover, their physical and optical properties were determined. The result showed that the poly(tetramethylene ether glycol)/isosorbide-based PUU exhibited enhanced tensile strength, transmittance, transparency and biodegradability compared to the existing diols. After 11 weeks composting, the biodegradability of blends increased in ISB-PUU. The morphology of the fractured surface of blend films were investigated by scanning electron microscopy.

Preparation and Characterization of Hydrophobic Coatings from Carnauba Wax/Lignin Blends

  • BANG, Junsik;KIM, Jungkyu;KIM, YunJin;OH, Jung-Kwon;YEO, wanmyeong;KWAK, Hyo Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.3
    • /
    • pp.149-158
    • /
    • 2022
  • To realize the infinite possibilities of materials derived from wood, it is necessary to overcome the weak moisture stability of wood. Thus, the development of an eco-friendly hydrophobic coating agent is essential, and of these, woody biomass-based materials are strongly attractive as coatings. In this study, eco-friendly hydrophobic wood coatings were prepared using carnauba wax purified from palm leaves and sprouts, and kraft lignin. The physicochemical properties of the carnauba wax/lignin blends according to the ratio of carnauba wax and lignin were observed by morphology and functional group change. In addition, the coating performance of carnauba wax/lignin blend coatings was confirmed by measuring the contact angle change. It was found that the addition of lignin could accelerate the atomization of wax particles, and that micro-roughness can be realized when applied to the actual wood surface, to ensure that the coating effect over time lasts longer. In addition, it was confirmed that the addition of lignin increases the hydrogen-bond-based interaction with the wood of the coating, thereby providing better coating stability and increasing the durability of the coating solvent under friction. The carnauba wax/lignin paint developed in this way is eco-friendly because all components are made of wood-based raw materials and have an excellent affinity with wood surfaces. Therefore, it is expected to be applicable to the coating process of wood-plastic composites and timber composites.

Engineering characteristics of dune sand-fine marble waste mixtures

  • Qureshi, Mohsin U.;Mahmood, Zafar;Farooq, Qazi U.;Qureshi, Qadir B.I.L.;Al-Handasi, Hajar;Chang, Ilhan
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.547-557
    • /
    • 2022
  • Dune sands are poorly graded collapsible soils lacking fines. This experimental study explored the technical feasibility of sustainable invigoration of fine waste materials to improve the geotechnical properties of dune sand. The fine waste considered in this study is fine marble waste. The fine waste powder was mixed with dune sand at different contents (5, 10,15, 20, 25, 50%), where the gradation, void ratio, compaction, and shear strength characteristics were assessed for each fine marble waste -dune sand blend. The geotechnical properties of the dune sand-fine marble waste mix delineated in this study reveal the enhancement in compaction and gradation characteristics of dune sand. According to the results, the binary mixture of dune sand with 20% of fine marble waste gives the highest maximum dry density and results in shear strength improvement. In addition, a numerical study is conducted for the practical application of the binary mix in the field and tested for an isolated shallow foundation. The elemental analysis of the fine marble waste confirms that the material is non-contaminated and can be employed for engineering applications. Furthermore, the numerical study elucidated that the shallow surface replacement of the site with the dune sand mixed with 20% fine marble waste gives optimal performance in terms of stress generation and settlement behavior of an isolated footing. For a sustainable mechanical performance of the fine marble waste mixed sand, an optimum dose of 20% fine marble waste is recommended, and some correlations are proposed. Thus, for improving dune sand's geotechnical characteristics, the addition of fine marble waste to the dune sand is an environment-friendly solution.

Blood Compatibility of Polyurethane-poly(vinyl alcohol) Polymer Blends (폴리우레탄-폴리비닐알콜 블렌드의 혈액적합성)

  • 김승수;유영미;신재섭;정규식
    • Polymer(Korea)
    • /
    • v.24 no.1
    • /
    • pp.82-89
    • /
    • 2000
  • The blood compatibilities of PU/PVA polymer blends with different mixing ratios were evaluated using various methods, such as fibrinogen adsorption, plasma recalcification time, platelet adhesion, whole blood clotting time, and complement activation. In addition, PVA on the surface of the polymer blends was crosslinked by glutaraldehyde to restrain the mobility of PVA molecules for characterizing the effect of PVA in the polymer blends on blood compatibility. The fibrinogen adsorption on the polymer blends decreased with the increase of PVA amount in the polymer blends. The plasma recalcification times of the polymer blends with 10-50 wt% PVA were longer than those of PU, PVA, and polymer blends with higher amount of PVA. The morphological changes and adhesion of platelets on the polymer blends with 30-50 wt% PVA were less than those on the other materials. The blood clotting times and complement activation on the polymer blends with 30-50 wt% PVA were reduced, compared to the other materials. On the other hand, the blood compatibility of the crosslinked polymer blends was relatively decreased, compared to the non-crosslinked ones. According to these experimental results, the blood compatibility of the polymer blends with 30-50 wt% PVA was better than that of the other materials and such a blood compatibility of the polymer blends might be related to the mobility of PVA molecules on the surface.

  • PDF

An Accelerated IK Solver for Deformation of 3D Models with Triangular Meshes (삼각형 메쉬로 이루어진 3D 모델의 변형을 위한 IK 계산 가속화)

  • Park, Hyunah;Kang, Daeun;Kwon, Taesoo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.27 no.5
    • /
    • pp.1-11
    • /
    • 2021
  • The purpose of our research is to efficiently deform a 3D models which is composed of a triangular mesh and a skeleton. We designed a novel inverse kinematics (IK) solver that calculates the updated positions of mesh vertices with fewer computing operations. Through our user interface, one or more markers are selected on the surface of the model and their target positions are set, then the system updates the positions of surface vertices to construct a deformed model. The IK solving process for updating vertex positions includes many computations for obtaining transformations of the markers, their affecting joints, and their parent joints. Many of these computations are often redundant. We precompute those redundant terms in advance so that the 3-nested loop computation structure was improved to a 2-nested loop structure, and thus the computation time for a deformation is greatly reduced. This novel IK solver can be adopted for efficient performance in various research fields, such as handling 3D models implemented by LBS method, or object tracking without any markers.

Cure Behavior and Tensile Properties of Ethylidene Norbornene/endo-Dicyclopentadiene Blends (Ethylidene Norbornene/endo-Dicyclopentadiene 블렌드의 경화 거동 및 인장 특성)

  • Jung, Jong Ki;Choi, Jung Hwa;Yang, Guang;Park, Jongmoon;Kim, Donghak;Kim, Seonggil;Lee, Jong Keun;Oh, Myung-Hoon;Kim, Bongsuk;Bang, Daesuk
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.506-513
    • /
    • 2015
  • Ethylidene norbornene (ENB) and its blends with endo-dicyclopentadiene (endo-DCPD) were prepared and reacted via the ring-opening metathesis polymerization (ROMP) reaction with the $1^{st}$ and $2^{nd}$ generation Grubbs' catalysts. Dynamic exothermic behaviors during ROMP and tensile properties after ROMP were evaluated using a differential scanning calorimeter (DSC) and a universal testing machine (UTM) for the samples, respectively. It revealed that the ROMP rate was accelerated with the less contents of endo-DCPD and under the $2^{nd}$ generation catalyst. Also, the addition of endo-DCPD and the $1^{st}$ generation catalyst resulted in higher tensile modulus and strength but lower toughness. Gel fraction measurement and fracture surface observation were made to understand the tensile properties.