The Intumescent Flame Retardant Mechanism of Red-phosphorus Containing Ortho-Cresol Novolac / Biphenyl Epoxy Composites

적인을 포함한 Ortho-Cresol Novolac/Biphenyl 에폭시 복합재료의 발포성 난연 기구

  • 김윤진 (고려대학교 재료공학과) ;
  • 강신우 (고려대학교 재료공학과) ;
  • 유제홍 (제일모직(주) 정보통신소재 사업부) ;
  • 김익흠 (제일모직(주) 정보통신소재 사업부) ;
  • 서광석 (고려대학교 재료공학과)
  • Published : 2002.09.01

Abstract

The flame retardant and thermal properties of ortho-cresol novolac (OCN) and biphenyl epoxy blends containing red-phosphorus were investigated. For five types of compounds designed with the volume ratio of OCN and biphenyl epoxy, thermal properties were analysed by TGA or DTC, and flame retardancy effectiveness was estimated through UL-94V test. While the flame retardant and thermal properties were improved with the content of filler and red-phosphorus, the excessive amount of red-phosphorus caused to deteriorate those properties. Using the blends of OCN/biphenyl rather than pure OCN or biphenyl epoxy as a matrix the flame retardancy of composites could be improved by the synergic effects of high thermal resistance of OCN and intumescent property of biphenyl. The flame retardant me chanism of epoxy compound containing red-phosphorus could be thought of the heat-insulating effect of intumescent char-layer formed in the surface of composites.

적인을 이용한 ortho-cresol novolac (OCN)과 biphenyl계 혼합 에폭시 수지 조성물의 열적 특성과 난연 특성을 검토하였다. OCN과 biphenyl 에폭시의 부피비에 따라 5가지 조성물을 디자인하였으며, TGA 및 DTG, 그리고 UL-94V 테스트를 통해 난연 효과를 평가하였다. 충전제와 적인의 함량이 증가할수록 열적 성질 및 우수한 난연 효과를 보였으나, 과량의 적인을 적용하였을 경우에는 열안정성의 저하를 유발하였다. 복합재료의 기저 수지호서 OCN/biphenyl 혼합 에폭시를 사용하였을 경우 OCN의 내열특성과 biphenyl 에폭시의 높은 발포 특성에 기인하여 보다 향상된 난연 특성을 확보할 수 있었다. 적인을 적용한 에폭시 수지 조성물의 난연 기구는 표면에서 형성된 발포성 탄화층 (char-layer)의 열적 방어 효과로 판단할 수 있었다.

Keywords

References

  1. Polym.Degrad.Stab. v.26 C.P.N. Nair;G. Glouet;Y. Guilbert
  2. J.Polym.Sci.Polym.Chem. v.35 Y.L. Liu;G.H. Hsiue;Y.S. Chiu;C.W. Lan https://doi.org/10.1002/(SICI)1099-0518(19970715)35:9<1769::AID-POLA18>3.0.CO;2-3
  3. J.Polym.Sci.Polym.Chem. v.32 S. Banerjee;S.K. Palit;S. Maiti https://doi.org/10.1002/pola.1994.080320202
  4. Polymer. v.35 M. Banks;J.R. Ebdonm;M. Johnson https://doi.org/10.1016/0032-3861(94)90910-5
  5. The Cumbustion of Organic Polymers C.F. Cellis;M.M. Hirschler
  6. Flame Retardancy of Polymeric Materials v.4 D.L. Chamberlain;Marcel Dekker(ed.)
  7. Polym.Degrad.Stabil. v.27 G. Camino;G. Martinasso;L. Costa https://doi.org/10.1016/0141-3910(90)90012-V
  8. J.Fire Retardant Chem. v.8 E. Martin;T. Ward
  9. Fire Mater. v.23 M. Wladyka-Przybylak;R. Kozlowski https://doi.org/10.1002/(SICI)1099-1018(199901/02)23:1<33::AID-FAM667>3.0.CO;2-Z
  10. J.Fire Flamm. v.2 H.L. Vandersall
  11. Thermoplastic Polymer Additives J. Green;Marcel Dekker(ed.)
  12. J.Appl.Polym.Sci. v.74 T. Wang;K. Chen https://doi.org/10.1002/(SICI)1097-4628(19991205)74:10<2499::AID-APP19>3.0.CO;2-4
  13. Polym.Int. v.49 C.I. Lindsay;S.B. Hill;M. Hearn;G. Manton;N. Everall;A. Bunn;J. Heron;I. Fletcher https://doi.org/10.1002/1097-0126(200010)49:10<1183::AID-PI584>3.0.CO;2-7