• Title/Summary/Keyword: Blast disease

Search Result 312, Processing Time 0.022 seconds

Rice Blast Populations Isolated from the Border Area of North Korea (북한 접경지역의 벼 도열병균 레이스 분포)

  • Chung, Hyunjung;Roh, Jae-Hwan;Yang, Jung-Wook;Shim, Hyeong-Kwon;Jeong, Da Gyeong;Kim, Joo Yeon;Shin, Jin Young;Kang, In Jeong;Heu, Sunggi
    • Research in Plant Disease
    • /
    • v.25 no.4
    • /
    • pp.164-172
    • /
    • 2019
  • Rice blast disease caused by Magnaporthe oryzae is the most important disease of rice in both South and North Korea. Cultivation of disease-resistant cultivar is the best way to prevent this notorious disease, but M. oryzae races have been continuously changed to adapt a new cultivar. Therefore, it is important to get the information about the race and avirulence genes of the pathogen for developing blast-resistant rice cultivar. Since the entrance of North Korea was prohibited, the information about the races of M. oryzae in North Korea border areas and South Korea was collected to get the information about the diversity of rice blast pathogen in North Korea. The disease occurrence on monogenic lines carrying single resistant gene was investigated in Jeonju, Suwon, Cheorwon, Goseong, and Baengnyeongdo in Korea, and Dandong in China. The monogenic lines in Jeonju and Suwon showed diverse ranges of the response, while those in Baengnyeongdo and Dandong showed relatively high resistant responses to rice blast. All the field isolates of M. oryzae were characterized for rice blast races by the Korean differential varieties and screened for known avirulence genes to determine the spatial distribution of avirulence genes and the population of M. oryzae.

The Effect of Fungicides against Rice Blast by the Nursery Treatment at Rice Seedling (살균제의 벼 육묘상 처리에 의한 도열병 방제 효과)

  • Kang, Beum-Kwan;Min, Ji-Young;Kim, Yun-Sik;Van Bach, Nguyen;Jung, Hae-Yeon;Cho, In-Joon;Kim, Heung-Tae
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.69-72
    • /
    • 2004
  • The control activity of isoprothiolane and tricyclazole mixed with carbosulfan, and probenazole by the nursery treatment was performed against rice leaf and neck blast caused by Magnaporthe grisea. In the paddy field, three fungicides showed good activities against leaf blast 3 months after nursery treatment. Especially the activity of tricyclazole against leaf blast gradually increased by the laps of time to 85.5%, which was assessed at 6 September,2003. Although the control value of isoprotholane and tricyclazole mixed with carbosulfan against neck blast was 47.5% and 61.1%, respectively, probenazole showed a very high activity against not only leaf blast but also neck blast, of which that was 91.2%. No phytotoxicity was observed in all the treatments after transplanting rice seedling in the paddy field. Based on these results, three systemic fungicides tested in this study showed such a good potential that they might be used to formulate the nursery treating granule.

Epidemiological Studies of Blast Disease of Rice Plant II. Significance of Differential Distribution of Leaf Lesions at Different Location of Each Tiller as an Inoculum Source of Panicle Blast (수도 도열병의 역학적 연구 II. 이삭 도열병 전염원으로서의 엽위별 병반분포의 의의)

  • Park J.S.;Yu S.H.;Kim H.G.
    • Korean journal of applied entomology
    • /
    • v.22 no.4 s.57
    • /
    • pp.277-282
    • /
    • 1983
  • Number and percentage of diseased area of leaf blast lesions formed on different leaf location were mostly distributed from the flag leaf(n-1) to the 3rd leaf from the top(n-3) in Tongil line rice varieties and on the 2nd leaf from the top(n-2) in Japonica type rice varieties. Especially leaf lesions of Nopung which was more susceptible to leaf blast among Ton1 line rice varieties were mostly distributed on flag leaf. Relation between the degree of lesion distribution and level of fertilizer was more clear with an increase of fertilizer quantity. Leaf blast lesions of rice varieties were generally distributed from the flag leaf to the with leaf from the top but mainly those at flag leaf and the 2nd leaf from the top were found to be most responsible for inoculum source of panicle blast after booting stage. Increase of the conidia formation was resulted from fluctuation of temperature$(24^{\circ}C\~16^{\circ}C)$ in low temperature range after booting stage and many inoculum sources were supplied on panicles until the end of September without impeding dispersal from leaf blast lesions as an inoculum source of panicle blast.

  • PDF

Epidemiology and Control of Rice Blast in Korea (한국(韓國)에서의 도열병(病) 발생(發生), 만연(蔓延)과 그 방제(防除))

  • Park, Jong Seong
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.2
    • /
    • pp.356-369
    • /
    • 1985
  • In Korea, inevitable researches for the blast control exactly started from 1927 by the organization of Office of Rural Development with the local extensive outbreak of panicle blast at Jeonlla Buk-Do Province in 1926. At present, the rice blast is still one of the most destructive and widespread diseases in spite of considerable contributions by rice scientists, particularly plant pathologists during last 55 years in Korea. Rice blast control and management are very difficult because of the marked variability in pathogenicity of the blast fungus. From the results obtained through the disease surveys during last 70 years, different 3 prevalence type of blast such as bimodal leaf-blast type, bimodal panicle-blast type and bimodal continual blast type were recognized. In generally speaking, pattern of blast outbreak is said to be characterized by severe outbreak of panicle blast after slight outbreak of leaf blast with discontinuity between leaf and panicle blast. So we have to pay much attention for successful management of panicle blast giving direct influence to rice yield. Main factors induce blast epidemic were pointed out to be breakdown of the disease resistance, nutritional unbalance such as excess application of nitrogen, delay of transplantation and longspell of rain fall by extensive surveys and researches on blast during last 70 years in Korea. The fact some of Japonica varieties such as Kokuryomiyako, Tamanishiki, Ginbozu and Pungok belong to varietal group A had been cultivated with extensive acrage over 30 years in this country should be mentioned by Korean rice scientists. Differences in field resistance between varieties in the same group are detectable and apparently small but sometimes epidemiologically significant differential effects may be found out in case of blast. Much more attention should be payed to accumulate the knowledges on field resistance for successful management of blast. Excess application of nitrogen is more effective to outbreak of panicle blast than that of leaf blast of IR varieties. In comparatively low level application of nitrogen infection rate of panicle blast of IR varieties is considerably high. Low temperature effects on outbreak of blast is very great. It results in remarkable increase of the inoculum potential on the leaf lesions and infection of panicle blast in leaf sheathes of IR varieties during the booting stage. In economic point of view, it is concluded that 5 times sprays of effective fungicides including 3 times before and 2 times after heading is good enough to control blast. We have experienced no one of control measures for blast is superior to all others. The integrated control measures was established as guideline of blast control around 1950 in Korea. This guideline must be helpful for rice growers as long as rice growing continue.

  • PDF

Changes in Endophyte Communities across the Different Plant Compartments in Response to the Rice Blast Infection

  • Mehwish Roy;Sravanthi Goud Burragoni;Junhyun Jeon
    • The Plant Pathology Journal
    • /
    • v.40 no.3
    • /
    • pp.299-309
    • /
    • 2024
  • The rice blast disease, caused by the fungal pathogen, Magnaporthe oryzae (syn. Pyricularia oryzae), poses a significant threat to the global rice production. Understanding how this disease impacts the plant's microbial communities is crucial for gaining insights into host-pathogen interactions. In this study, we investigated the changes in communities of bacterial and fungal endophytes inhabiting different compartments in healthy and diseased plants. We found that both alpha and beta diversities of endophytic communities do not change significantly by the pathogen infection. Rather, the type of plant compartment appeared to be the main driver of endophytic community structures. Although the overall structure seemed to be consistent between healthy and diseased plants, our analysis of differentially abundant taxa revealed the specific bacterial and fungal operational taxonomic units that exhibited enrichment in the root and leaf compartments of infected plants. These findings suggest that endophyte communities are robust to the changes at the early stage of pathogen infection, and that some of endophytes enriched in infected plants might have roles in the defense against the pathogen.

Screening of Rice Germplasm for the Distribution of Rice Blast Resistance Genes and Identification of Resistant Sources

  • Ali, Asjad;Hyun, Do-Yoon;Choi, Yu-Mi;Lee, Sukyeung;Oh, Sejong;Park, Hong-Jae;Lee, Myung-Chul
    • Korean Journal of Plant Resources
    • /
    • v.29 no.6
    • /
    • pp.658-669
    • /
    • 2016
  • Rice blast, caused by a fungus Magnaporthe oryzae, is one of the most devastating diseases of rice worldwide. Analyzing the valuable genetic resources is important in making progress towards blast resistance. Molecular screening of major rice blast resistance (R) genes was determined in 2,509 accessions of rice germplasm from different geographic regions of Asia and Europe using PCR based markers which showed linkage to twelve major blast R genes, Pik-p, Pi39, Pit, Pik-m, Pi-d(t)2, Pii, Pib, Pik, Pita, Pita/Pita-2, Pi5, and Piz-t. Out of 2,509 accessions, only two accessions had maximum nine blast resistance genes followed by eighteen accessions each with eight R genes. The polygenic combination of three genes was possessed by maximum number of accessions (824), while among others 48 accessions possessed seven genes, 119 accessions had six genes, 267 accessions had five genes, 487 accessions had four genes, 646 accessions had two genes, and 98 accessions had single R gene. The Pik-p gene appeared to be omnipresent and was detected in all germplasm. Furthermore, principal component analysis (PCA) indicated that Pita, Pita/Pita-2, Pi-d(t)2, Pib and Pit were the major genes responsible for resistance in the germplasm. The present investigation revealed that a set of 68 elite germplasm accessions would have a competitive edge over the current resistance donors being utilized in the breeding programs. Overall, these results might be useful to identify and incorporate the resistance genes from germplasm into elite cultivars through marker assisted selection in rice breeding.

The Effectiveness of a New Systemic Fungicide EL-291 for the Control of Rice Blast Disease (새로운 침투성살균제 EL291의 벼 도열병 방제효과)

  • Hwang Byung Kook;Lee Eun Jong;Park Chang Seuk;Lee Kyung Hee
    • Korean journal of applied entomology
    • /
    • v.15 no.2 s.27
    • /
    • pp.57-60
    • /
    • 1976
  • Experiments were carried out to determine the effectiveness of a new systemic fungicide EL-291 (5-Methyl-1, 2,4-triazolo (3,4-b) benzothiazole) for the control of rice blast disease in greenhouse and paddy field. The efficiency of EL-291 was much greater when applied before inoculation than when applied after inoculation. Kasugamin and Benlate were most effective as eradicants. For control of leaf blast, effectiveness of EL-291 was not significantly different than either Kasugamin or Benlate. However, EL-291 was considered more economical and reliable than either Kasugamin or Benlate. EL-291 required only a single foliar application or a transplant root soak, whereas two applications of the other fungicides were required. EL-191 was also more effective against panicle blast when applied only once, compared with two applications of Kasugamin or Benlate. The highest riceyields were obtained in plots treated with EL-29l.

  • PDF

Rice Breeding for the Resistance to the Disease and Insect Pests (수도 병해충에 대한 저항성품종의 육종)

  • Heu M. H.
    • Korean journal of applied entomology
    • /
    • v.22 no.2 s.55
    • /
    • pp.74-83
    • /
    • 1983
  • Yield losses due to diseases and insect pests were mentioned and emphasized the efficiency of resistant cultivars in curving the yield losses and increasing chemical efficiency. Present status of resistance breeding for blast, bacterial leaf blight viruses, brown planthopper and white backed planthopper were introduced and the resistance sources for those are discussed. Breeding strategies for above items were presented. Specially for the blast resistance, discussions were made in some detail. With brief future prospects of resistance breeding in Korea, a suggestion was made for pathologists to make clear about whether the blast spores will be brought from mainland China as we see with Bph and Wbph or not.

  • PDF

Meteorological Condition and Pest Management (기상환경과 병해충 발생 및 그 대책)

  • 현재선
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.361-370
    • /
    • 1982
  • The effects of climatic factors on organisms lire variable and complex, and it, however, can be interpreted in terms of those on the distribution and those on the population densities. The distribution of an organism may largely be determined by the temperatures, except some temporal organisms which are depended on the air mass movements. Population density of an organism is determined by various climatic factors, such as previous winter temperature, temperature of growing season and rainfall. The start of growing season of the rice plants has been shifted to earlier since last decade in Korea. This may mean that the overall climatic condition during the growing season might be considerably different from those in past years, and such a difference in climatic conditions might have close relation with the recent status of the diseases and insect pests through direct effects on the physiology and population dynamics of the organisms, as well as through on the biotic associations of the pest organisms. The white back planthopper and brown planthopper have become the key insect pests in Korea in recent years. They are migratory and have high reproductive pontentials and more generations than average residential insects. The synchronization of the migrants and physiological condition of the rice plants seems to be the important factors in relation to the recent outbreaks of these insects; the high reproductive rate can be obtained with the growth stage of rice being 30-50 days after transplanting. The modication of the microclimate associated with high plant density and some other introduced new cultural techniques also have some relation with the outbreak. The key diseases of the rice are the blast disease, sheath blight and the bacterial leaf blight. For the rice blast, the seedling blast and leaf blast during the early growing season and the neck blast, have become more serious, the former may be related to hotbed nursery and the later may be related to the high humidity in early August, and synchronization of the heading time which has been shifted to early part from middle or late part of August. In general, for the rice diseases, the development of the new races have been the most serious which are largely resulted from the introduction of the new varieties, but it also seems to be related with the prolonged periods of the favorable condition associated with the shifted growing seasons. In general, the diseases and insect pest problems have become much more variable and complex, and control measures should be based on the thorough knowledge of the ecology of the pest organisms, that is, effects of various environmental factors on the disease cycle; spore release, spore deposition, infection, colonization and sporulation of the disease organisms, and those on the development, reproductive potentials, dispersal, age specific responses of the insects. The well organized real-time pest management systems, such as alfalfa weevil management system developed at the Purdue University in U.S., is the prime importance for the implementation of the pest management principles.

  • PDF